Class TableVertical
java.lang.Object
com.azure.resourcemanager.machinelearning.models.TableVertical
- All Implemented Interfaces:
com.azure.json.JsonSerializable<TableVertical>
Abstract class for AutoML tasks that use table dataset as input - such as Classification/Regression/Forecasting.
-
Constructor Summary
Constructors -
Method Summary
Modifier and TypeMethodDescriptionGet the cvSplitColumnNames property: Columns to use for CVSplit data.Get the featurizationSettings property: Featurization inputs needed for AutoML job.static TableVerticalfromJson(com.azure.json.JsonReader jsonReader) Reads an instance of TableVertical from the JsonReader.Get the limitSettings property: Execution constraints for AutoMLJob.Get the nCrossValidations property: Number of cross validation folds to be applied on training dataset when validation dataset is not provided.testData()Get the testData property: Test data input.Get the testDataSize property: The fraction of test dataset that needs to be set aside for validation purpose.com.azure.json.JsonWritertoJson(com.azure.json.JsonWriter jsonWriter) voidvalidate()Validates the instance.Get the validationData property: Validation data inputs.Get the validationDataSize property: The fraction of training dataset that needs to be set aside for validation purpose.Get the weightColumnName property: The name of the sample weight column.withCvSplitColumnNames(List<String> cvSplitColumnNames) Set the cvSplitColumnNames property: Columns to use for CVSplit data.withFeaturizationSettings(TableVerticalFeaturizationSettings featurizationSettings) Set the featurizationSettings property: Featurization inputs needed for AutoML job.withLimitSettings(TableVerticalLimitSettings limitSettings) Set the limitSettings property: Execution constraints for AutoMLJob.withNCrossValidations(NCrossValidations nCrossValidations) Set the nCrossValidations property: Number of cross validation folds to be applied on training dataset when validation dataset is not provided.withTestData(MLTableJobInput testData) Set the testData property: Test data input.withTestDataSize(Double testDataSize) Set the testDataSize property: The fraction of test dataset that needs to be set aside for validation purpose.withValidationData(MLTableJobInput validationData) Set the validationData property: Validation data inputs.withValidationDataSize(Double validationDataSize) Set the validationDataSize property: The fraction of training dataset that needs to be set aside for validation purpose.withWeightColumnName(String weightColumnName) Set the weightColumnName property: The name of the sample weight column.Methods inherited from class java.lang.Object
clone, equals, finalize, getClass, hashCode, notify, notifyAll, toString, wait, wait, waitMethods inherited from interface com.azure.json.JsonSerializable
toJson, toJson, toJsonBytes, toJsonString
-
Constructor Details
-
TableVertical
public TableVertical()Creates an instance of TableVertical class.
-
-
Method Details
-
limitSettings
Get the limitSettings property: Execution constraints for AutoMLJob.- Returns:
- the limitSettings value.
-
withLimitSettings
Set the limitSettings property: Execution constraints for AutoMLJob.- Parameters:
limitSettings- the limitSettings value to set.- Returns:
- the TableVertical object itself.
-
nCrossValidations
Get the nCrossValidations property: Number of cross validation folds to be applied on training dataset when validation dataset is not provided.- Returns:
- the nCrossValidations value.
-
withNCrossValidations
Set the nCrossValidations property: Number of cross validation folds to be applied on training dataset when validation dataset is not provided.- Parameters:
nCrossValidations- the nCrossValidations value to set.- Returns:
- the TableVertical object itself.
-
cvSplitColumnNames
Get the cvSplitColumnNames property: Columns to use for CVSplit data.- Returns:
- the cvSplitColumnNames value.
-
withCvSplitColumnNames
Set the cvSplitColumnNames property: Columns to use for CVSplit data.- Parameters:
cvSplitColumnNames- the cvSplitColumnNames value to set.- Returns:
- the TableVertical object itself.
-
weightColumnName
Get the weightColumnName property: The name of the sample weight column. Automated ML supports a weighted column as an input, causing rows in the data to be weighted up or down.- Returns:
- the weightColumnName value.
-
withWeightColumnName
Set the weightColumnName property: The name of the sample weight column. Automated ML supports a weighted column as an input, causing rows in the data to be weighted up or down.- Parameters:
weightColumnName- the weightColumnName value to set.- Returns:
- the TableVertical object itself.
-
validationData
Get the validationData property: Validation data inputs.- Returns:
- the validationData value.
-
withValidationData
Set the validationData property: Validation data inputs.- Parameters:
validationData- the validationData value to set.- Returns:
- the TableVertical object itself.
-
testData
Get the testData property: Test data input.- Returns:
- the testData value.
-
withTestData
Set the testData property: Test data input.- Parameters:
testData- the testData value to set.- Returns:
- the TableVertical object itself.
-
validationDataSize
Get the validationDataSize property: The fraction of training dataset that needs to be set aside for validation purpose. Values between (0.0 , 1.0) Applied when validation dataset is not provided.- Returns:
- the validationDataSize value.
-
withValidationDataSize
Set the validationDataSize property: The fraction of training dataset that needs to be set aside for validation purpose. Values between (0.0 , 1.0) Applied when validation dataset is not provided.- Parameters:
validationDataSize- the validationDataSize value to set.- Returns:
- the TableVertical object itself.
-
testDataSize
Get the testDataSize property: The fraction of test dataset that needs to be set aside for validation purpose. Values between (0.0 , 1.0) Applied when validation dataset is not provided.- Returns:
- the testDataSize value.
-
withTestDataSize
Set the testDataSize property: The fraction of test dataset that needs to be set aside for validation purpose. Values between (0.0 , 1.0) Applied when validation dataset is not provided.- Parameters:
testDataSize- the testDataSize value to set.- Returns:
- the TableVertical object itself.
-
featurizationSettings
Get the featurizationSettings property: Featurization inputs needed for AutoML job.- Returns:
- the featurizationSettings value.
-
withFeaturizationSettings
public TableVertical withFeaturizationSettings(TableVerticalFeaturizationSettings featurizationSettings) Set the featurizationSettings property: Featurization inputs needed for AutoML job.- Parameters:
featurizationSettings- the featurizationSettings value to set.- Returns:
- the TableVertical object itself.
-
validate
public void validate()Validates the instance.- Throws:
IllegalArgumentException- thrown if the instance is not valid.
-
toJson
- Specified by:
toJsonin interfacecom.azure.json.JsonSerializable<TableVertical>- Throws:
IOException
-
fromJson
Reads an instance of TableVertical from the JsonReader.- Parameters:
jsonReader- The JsonReader being read.- Returns:
- An instance of TableVertical if the JsonReader was pointing to an instance of it, or null if it was pointing to JSON null.
- Throws:
IOException- If an error occurs while reading the TableVertical.
-