Class ImageModelSettingsObjectDetection
java.lang.Object
com.azure.resourcemanager.machinelearning.models.ImageModelSettings
com.azure.resourcemanager.machinelearning.models.ImageModelSettingsObjectDetection
- All Implemented Interfaces:
com.azure.json.JsonSerializable<ImageModelSettings>
Settings used for training the model.
For more information on the available settings please visit the official documentation:
https://docs.microsoft.com/en-us/azure/machine-learning/how-to-auto-train-image-models.
-
Constructor Summary
ConstructorsConstructorDescriptionCreates an instance of ImageModelSettingsObjectDetection class. -
Method Summary
Modifier and TypeMethodDescriptionGet the boxDetectionsPerImage property: Maximum number of detections per image, for all classes.Get the boxScoreThreshold property: During inference, only return proposals with a classification score greater than BoxScoreThreshold.fromJson(com.azure.json.JsonReader jsonReader) Reads an instance of ImageModelSettingsObjectDetection from the JsonReader.Get the imageSize property: Image size for train and validation.maxSize()Get the maxSize property: Maximum size of the image to be rescaled before feeding it to the backbone.minSize()Get the minSize property: Minimum size of the image to be rescaled before feeding it to the backbone.Get the modelSize property: Model size.Get the multiScale property: Enable multi-scale image by varying image size by +/- 50%.Get the nmsIouThreshold property: IOU threshold used during inference in NMS post processing.Get the tileGridSize property: The grid size to use for tiling each image.Get the tileOverlapRatio property: Overlap ratio between adjacent tiles in each dimension.Get the tilePredictionsNmsThreshold property: The IOU threshold to use to perform NMS while merging predictions from tiles and image.com.azure.json.JsonWritertoJson(com.azure.json.JsonWriter jsonWriter) voidvalidate()Validates the instance.Get the validationIouThreshold property: IOU threshold to use when computing validation metric.Get the validationMetricType property: Metric computation method to use for validation metrics.withAdvancedSettings(String advancedSettings) Set the advancedSettings property: Settings for advanced scenarios.withAmsGradient(Boolean amsGradient) Set the amsGradient property: Enable AMSGrad when optimizer is 'adam' or 'adamw'.withAugmentations(String augmentations) Set the augmentations property: Settings for using Augmentations.Set the beta1 property: Value of 'beta1' when optimizer is 'adam' or 'adamw'.Set the beta2 property: Value of 'beta2' when optimizer is 'adam' or 'adamw'.withBoxDetectionsPerImage(Integer boxDetectionsPerImage) Set the boxDetectionsPerImage property: Maximum number of detections per image, for all classes.withBoxScoreThreshold(Float boxScoreThreshold) Set the boxScoreThreshold property: During inference, only return proposals with a classification score greater than BoxScoreThreshold.withCheckpointFrequency(Integer checkpointFrequency) Set the checkpointFrequency property: Frequency to store model checkpoints.withCheckpointModel(MLFlowModelJobInput checkpointModel) Set the checkpointModel property: The pretrained checkpoint model for incremental training.withCheckpointRunId(String checkpointRunId) Set the checkpointRunId property: The id of a previous run that has a pretrained checkpoint for incremental training.withDistributed(Boolean distributed) Set the distributed property: Whether to use distributed training.withEarlyStopping(Boolean earlyStopping) Set the earlyStopping property: Enable early stopping logic during training.withEarlyStoppingDelay(Integer earlyStoppingDelay) Set the earlyStoppingDelay property: Minimum number of epochs or validation evaluations to wait before primary metric improvement is tracked for early stopping.withEarlyStoppingPatience(Integer earlyStoppingPatience) Set the earlyStoppingPatience property: Minimum number of epochs or validation evaluations with no primary metric improvement before the run is stopped.withEnableOnnxNormalization(Boolean enableOnnxNormalization) Set the enableOnnxNormalization property: Enable normalization when exporting ONNX model.withEvaluationFrequency(Integer evaluationFrequency) Set the evaluationFrequency property: Frequency to evaluate validation dataset to get metric scores.withGradientAccumulationStep(Integer gradientAccumulationStep) Set the gradientAccumulationStep property: Gradient accumulation means running a configured number of "GradAccumulationStep" steps without updating the model weights while accumulating the gradients of those steps, and then using the accumulated gradients to compute the weight updates.withImageSize(Integer imageSize) Set the imageSize property: Image size for train and validation.withLayersToFreeze(Integer layersToFreeze) Set the layersToFreeze property: Number of layers to freeze for the model.withLearningRate(Float learningRate) Set the learningRate property: Initial learning rate.withLearningRateScheduler(LearningRateScheduler learningRateScheduler) Set the learningRateScheduler property: Type of learning rate scheduler.withMaxSize(Integer maxSize) Set the maxSize property: Maximum size of the image to be rescaled before feeding it to the backbone.withMinSize(Integer minSize) Set the minSize property: Minimum size of the image to be rescaled before feeding it to the backbone.withModelName(String modelName) Set the modelName property: Name of the model to use for training.withModelSize(ModelSize modelSize) Set the modelSize property: Model size.withMomentum(Float momentum) Set the momentum property: Value of momentum when optimizer is 'sgd'.withMultiScale(Boolean multiScale) Set the multiScale property: Enable multi-scale image by varying image size by +/- 50%.withNesterov(Boolean nesterov) Set the nesterov property: Enable nesterov when optimizer is 'sgd'.withNmsIouThreshold(Float nmsIouThreshold) Set the nmsIouThreshold property: IOU threshold used during inference in NMS post processing.withNumberOfEpochs(Integer numberOfEpochs) Set the numberOfEpochs property: Number of training epochs.withNumberOfWorkers(Integer numberOfWorkers) Set the numberOfWorkers property: Number of data loader workers.withOptimizer(StochasticOptimizer optimizer) Set the optimizer property: Type of optimizer.withRandomSeed(Integer randomSeed) Set the randomSeed property: Random seed to be used when using deterministic training.withStepLRGamma(Float stepLRGamma) Set the stepLRGamma property: Value of gamma when learning rate scheduler is 'step'.withStepLRStepSize(Integer stepLRStepSize) Set the stepLRStepSize property: Value of step size when learning rate scheduler is 'step'.withTileGridSize(String tileGridSize) Set the tileGridSize property: The grid size to use for tiling each image.withTileOverlapRatio(Float tileOverlapRatio) Set the tileOverlapRatio property: Overlap ratio between adjacent tiles in each dimension.withTilePredictionsNmsThreshold(Float tilePredictionsNmsThreshold) Set the tilePredictionsNmsThreshold property: The IOU threshold to use to perform NMS while merging predictions from tiles and image.withTrainingBatchSize(Integer trainingBatchSize) Set the trainingBatchSize property: Training batch size.withValidationBatchSize(Integer validationBatchSize) Set the validationBatchSize property: Validation batch size.withValidationIouThreshold(Float validationIouThreshold) Set the validationIouThreshold property: IOU threshold to use when computing validation metric.withValidationMetricType(ValidationMetricType validationMetricType) Set the validationMetricType property: Metric computation method to use for validation metrics.withWarmupCosineLRCycles(Float warmupCosineLRCycles) Set the warmupCosineLRCycles property: Value of cosine cycle when learning rate scheduler is 'warmup_cosine'.withWarmupCosineLRWarmupEpochs(Integer warmupCosineLRWarmupEpochs) Set the warmupCosineLRWarmupEpochs property: Value of warmup epochs when learning rate scheduler is 'warmup_cosine'.withWeightDecay(Float weightDecay) Set the weightDecay property: Value of weight decay when optimizer is 'sgd', 'adam', or 'adamw'.Methods inherited from class com.azure.resourcemanager.machinelearning.models.ImageModelSettings
advancedSettings, amsGradient, augmentations, beta1, beta2, checkpointFrequency, checkpointModel, checkpointRunId, distributed, earlyStopping, earlyStoppingDelay, earlyStoppingPatience, enableOnnxNormalization, evaluationFrequency, gradientAccumulationStep, layersToFreeze, learningRate, learningRateScheduler, modelName, momentum, nesterov, numberOfEpochs, numberOfWorkers, optimizer, randomSeed, stepLRGamma, stepLRStepSize, trainingBatchSize, validationBatchSize, warmupCosineLRCycles, warmupCosineLRWarmupEpochs, weightDecayMethods inherited from class java.lang.Object
clone, equals, finalize, getClass, hashCode, notify, notifyAll, toString, wait, wait, waitMethods inherited from interface com.azure.json.JsonSerializable
toJson, toJson, toJsonBytes, toJsonString
-
Constructor Details
-
ImageModelSettingsObjectDetection
public ImageModelSettingsObjectDetection()Creates an instance of ImageModelSettingsObjectDetection class.
-
-
Method Details
-
boxDetectionsPerImage
Get the boxDetectionsPerImage property: Maximum number of detections per image, for all classes. Must be a positive integer. Note: This settings is not supported for the 'yolov5' algorithm.- Returns:
- the boxDetectionsPerImage value.
-
withBoxDetectionsPerImage
Set the boxDetectionsPerImage property: Maximum number of detections per image, for all classes. Must be a positive integer. Note: This settings is not supported for the 'yolov5' algorithm.- Parameters:
boxDetectionsPerImage- the boxDetectionsPerImage value to set.- Returns:
- the ImageModelSettingsObjectDetection object itself.
-
boxScoreThreshold
Get the boxScoreThreshold property: During inference, only return proposals with a classification score greater than BoxScoreThreshold. Must be a float in the range[0, 1].- Returns:
- the boxScoreThreshold value.
-
withBoxScoreThreshold
Set the boxScoreThreshold property: During inference, only return proposals with a classification score greater than BoxScoreThreshold. Must be a float in the range[0, 1].- Parameters:
boxScoreThreshold- the boxScoreThreshold value to set.- Returns:
- the ImageModelSettingsObjectDetection object itself.
-
imageSize
Get the imageSize property: Image size for train and validation. Must be a positive integer. Note: The training run may get into CUDA OOM if the size is too big. Note: This settings is only supported for the 'yolov5' algorithm.- Returns:
- the imageSize value.
-
withImageSize
Set the imageSize property: Image size for train and validation. Must be a positive integer. Note: The training run may get into CUDA OOM if the size is too big. Note: This settings is only supported for the 'yolov5' algorithm.- Parameters:
imageSize- the imageSize value to set.- Returns:
- the ImageModelSettingsObjectDetection object itself.
-
maxSize
Get the maxSize property: Maximum size of the image to be rescaled before feeding it to the backbone. Must be a positive integer. Note: training run may get into CUDA OOM if the size is too big. Note: This settings is not supported for the 'yolov5' algorithm.- Returns:
- the maxSize value.
-
withMaxSize
Set the maxSize property: Maximum size of the image to be rescaled before feeding it to the backbone. Must be a positive integer. Note: training run may get into CUDA OOM if the size is too big. Note: This settings is not supported for the 'yolov5' algorithm.- Parameters:
maxSize- the maxSize value to set.- Returns:
- the ImageModelSettingsObjectDetection object itself.
-
minSize
Get the minSize property: Minimum size of the image to be rescaled before feeding it to the backbone. Must be a positive integer. Note: training run may get into CUDA OOM if the size is too big. Note: This settings is not supported for the 'yolov5' algorithm.- Returns:
- the minSize value.
-
withMinSize
Set the minSize property: Minimum size of the image to be rescaled before feeding it to the backbone. Must be a positive integer. Note: training run may get into CUDA OOM if the size is too big. Note: This settings is not supported for the 'yolov5' algorithm.- Parameters:
minSize- the minSize value to set.- Returns:
- the ImageModelSettingsObjectDetection object itself.
-
modelSize
Get the modelSize property: Model size. Must be 'small', 'medium', 'large', or 'xlarge'. Note: training run may get into CUDA OOM if the model size is too big. Note: This settings is only supported for the 'yolov5' algorithm.- Returns:
- the modelSize value.
-
withModelSize
Set the modelSize property: Model size. Must be 'small', 'medium', 'large', or 'xlarge'. Note: training run may get into CUDA OOM if the model size is too big. Note: This settings is only supported for the 'yolov5' algorithm.- Parameters:
modelSize- the modelSize value to set.- Returns:
- the ImageModelSettingsObjectDetection object itself.
-
multiScale
Get the multiScale property: Enable multi-scale image by varying image size by +/- 50%. Note: training run may get into CUDA OOM if no sufficient GPU memory. Note: This settings is only supported for the 'yolov5' algorithm.- Returns:
- the multiScale value.
-
withMultiScale
Set the multiScale property: Enable multi-scale image by varying image size by +/- 50%. Note: training run may get into CUDA OOM if no sufficient GPU memory. Note: This settings is only supported for the 'yolov5' algorithm.- Parameters:
multiScale- the multiScale value to set.- Returns:
- the ImageModelSettingsObjectDetection object itself.
-
nmsIouThreshold
Get the nmsIouThreshold property: IOU threshold used during inference in NMS post processing. Must be a float in the range [0, 1].- Returns:
- the nmsIouThreshold value.
-
withNmsIouThreshold
Set the nmsIouThreshold property: IOU threshold used during inference in NMS post processing. Must be a float in the range [0, 1].- Parameters:
nmsIouThreshold- the nmsIouThreshold value to set.- Returns:
- the ImageModelSettingsObjectDetection object itself.
-
tileGridSize
Get the tileGridSize property: The grid size to use for tiling each image. Note: TileGridSize must not be None to enable small object detection logic. A string containing two integers in mxn format. Note: This settings is not supported for the 'yolov5' algorithm.- Returns:
- the tileGridSize value.
-
withTileGridSize
Set the tileGridSize property: The grid size to use for tiling each image. Note: TileGridSize must not be None to enable small object detection logic. A string containing two integers in mxn format. Note: This settings is not supported for the 'yolov5' algorithm.- Parameters:
tileGridSize- the tileGridSize value to set.- Returns:
- the ImageModelSettingsObjectDetection object itself.
-
tileOverlapRatio
Get the tileOverlapRatio property: Overlap ratio between adjacent tiles in each dimension. Must be float in the range [0, 1). Note: This settings is not supported for the 'yolov5' algorithm.- Returns:
- the tileOverlapRatio value.
-
withTileOverlapRatio
Set the tileOverlapRatio property: Overlap ratio between adjacent tiles in each dimension. Must be float in the range [0, 1). Note: This settings is not supported for the 'yolov5' algorithm.- Parameters:
tileOverlapRatio- the tileOverlapRatio value to set.- Returns:
- the ImageModelSettingsObjectDetection object itself.
-
tilePredictionsNmsThreshold
Get the tilePredictionsNmsThreshold property: The IOU threshold to use to perform NMS while merging predictions from tiles and image. Used in validation/ inference. Must be float in the range [0, 1]. Note: This settings is not supported for the 'yolov5' algorithm.- Returns:
- the tilePredictionsNmsThreshold value.
-
withTilePredictionsNmsThreshold
public ImageModelSettingsObjectDetection withTilePredictionsNmsThreshold(Float tilePredictionsNmsThreshold) Set the tilePredictionsNmsThreshold property: The IOU threshold to use to perform NMS while merging predictions from tiles and image. Used in validation/ inference. Must be float in the range [0, 1]. Note: This settings is not supported for the 'yolov5' algorithm.- Parameters:
tilePredictionsNmsThreshold- the tilePredictionsNmsThreshold value to set.- Returns:
- the ImageModelSettingsObjectDetection object itself.
-
validationIouThreshold
Get the validationIouThreshold property: IOU threshold to use when computing validation metric. Must be float in the range [0, 1].- Returns:
- the validationIouThreshold value.
-
withValidationIouThreshold
Set the validationIouThreshold property: IOU threshold to use when computing validation metric. Must be float in the range [0, 1].- Parameters:
validationIouThreshold- the validationIouThreshold value to set.- Returns:
- the ImageModelSettingsObjectDetection object itself.
-
validationMetricType
Get the validationMetricType property: Metric computation method to use for validation metrics.- Returns:
- the validationMetricType value.
-
withValidationMetricType
public ImageModelSettingsObjectDetection withValidationMetricType(ValidationMetricType validationMetricType) Set the validationMetricType property: Metric computation method to use for validation metrics.- Parameters:
validationMetricType- the validationMetricType value to set.- Returns:
- the ImageModelSettingsObjectDetection object itself.
-
withAmsGradient
Set the amsGradient property: Enable AMSGrad when optimizer is 'adam' or 'adamw'.- Overrides:
withAmsGradientin classImageModelSettings- Parameters:
amsGradient- the amsGradient value to set.- Returns:
- the ImageModelSettings object itself.
-
withAdvancedSettings
Set the advancedSettings property: Settings for advanced scenarios.- Overrides:
withAdvancedSettingsin classImageModelSettings- Parameters:
advancedSettings- the advancedSettings value to set.- Returns:
- the ImageModelSettings object itself.
-
withAugmentations
Set the augmentations property: Settings for using Augmentations.- Overrides:
withAugmentationsin classImageModelSettings- Parameters:
augmentations- the augmentations value to set.- Returns:
- the ImageModelSettings object itself.
-
withBeta1
Set the beta1 property: Value of 'beta1' when optimizer is 'adam' or 'adamw'. Must be a float in the range [0, 1].- Overrides:
withBeta1in classImageModelSettings- Parameters:
beta1- the beta1 value to set.- Returns:
- the ImageModelSettings object itself.
-
withBeta2
Set the beta2 property: Value of 'beta2' when optimizer is 'adam' or 'adamw'. Must be a float in the range [0, 1].- Overrides:
withBeta2in classImageModelSettings- Parameters:
beta2- the beta2 value to set.- Returns:
- the ImageModelSettings object itself.
-
withCheckpointFrequency
Set the checkpointFrequency property: Frequency to store model checkpoints. Must be a positive integer.- Overrides:
withCheckpointFrequencyin classImageModelSettings- Parameters:
checkpointFrequency- the checkpointFrequency value to set.- Returns:
- the ImageModelSettings object itself.
-
withCheckpointRunId
Set the checkpointRunId property: The id of a previous run that has a pretrained checkpoint for incremental training.- Overrides:
withCheckpointRunIdin classImageModelSettings- Parameters:
checkpointRunId- the checkpointRunId value to set.- Returns:
- the ImageModelSettings object itself.
-
withCheckpointModel
Set the checkpointModel property: The pretrained checkpoint model for incremental training.- Overrides:
withCheckpointModelin classImageModelSettings- Parameters:
checkpointModel- the checkpointModel value to set.- Returns:
- the ImageModelSettings object itself.
-
withDistributed
Set the distributed property: Whether to use distributed training.- Overrides:
withDistributedin classImageModelSettings- Parameters:
distributed- the distributed value to set.- Returns:
- the ImageModelSettings object itself.
-
withEarlyStopping
Set the earlyStopping property: Enable early stopping logic during training.- Overrides:
withEarlyStoppingin classImageModelSettings- Parameters:
earlyStopping- the earlyStopping value to set.- Returns:
- the ImageModelSettings object itself.
-
withEarlyStoppingDelay
Set the earlyStoppingDelay property: Minimum number of epochs or validation evaluations to wait before primary metric improvement is tracked for early stopping. Must be a positive integer.- Overrides:
withEarlyStoppingDelayin classImageModelSettings- Parameters:
earlyStoppingDelay- the earlyStoppingDelay value to set.- Returns:
- the ImageModelSettings object itself.
-
withEarlyStoppingPatience
Set the earlyStoppingPatience property: Minimum number of epochs or validation evaluations with no primary metric improvement before the run is stopped. Must be a positive integer.- Overrides:
withEarlyStoppingPatiencein classImageModelSettings- Parameters:
earlyStoppingPatience- the earlyStoppingPatience value to set.- Returns:
- the ImageModelSettings object itself.
-
withEvaluationFrequency
Set the evaluationFrequency property: Frequency to evaluate validation dataset to get metric scores. Must be a positive integer.- Overrides:
withEvaluationFrequencyin classImageModelSettings- Parameters:
evaluationFrequency- the evaluationFrequency value to set.- Returns:
- the ImageModelSettings object itself.
-
withEnableOnnxNormalization
public ImageModelSettingsObjectDetection withEnableOnnxNormalization(Boolean enableOnnxNormalization) Set the enableOnnxNormalization property: Enable normalization when exporting ONNX model.- Overrides:
withEnableOnnxNormalizationin classImageModelSettings- Parameters:
enableOnnxNormalization- the enableOnnxNormalization value to set.- Returns:
- the ImageModelSettings object itself.
-
withGradientAccumulationStep
public ImageModelSettingsObjectDetection withGradientAccumulationStep(Integer gradientAccumulationStep) Set the gradientAccumulationStep property: Gradient accumulation means running a configured number of "GradAccumulationStep" steps without updating the model weights while accumulating the gradients of those steps, and then using the accumulated gradients to compute the weight updates. Must be a positive integer.- Overrides:
withGradientAccumulationStepin classImageModelSettings- Parameters:
gradientAccumulationStep- the gradientAccumulationStep value to set.- Returns:
- the ImageModelSettings object itself.
-
withLayersToFreeze
Set the layersToFreeze property: Number of layers to freeze for the model. Must be a positive integer. For instance, passing 2 as value for 'seresnext' means freezing layer0 and layer1. For a full list of models supported and details on layer freeze, please see: https://docs.microsoft.com/en-us/azure/machine-learning/how-to-auto-train-image-models.- Overrides:
withLayersToFreezein classImageModelSettings- Parameters:
layersToFreeze- the layersToFreeze value to set.- Returns:
- the ImageModelSettings object itself.
-
withLearningRate
Set the learningRate property: Initial learning rate. Must be a float in the range [0, 1].- Overrides:
withLearningRatein classImageModelSettings- Parameters:
learningRate- the learningRate value to set.- Returns:
- the ImageModelSettings object itself.
-
withLearningRateScheduler
public ImageModelSettingsObjectDetection withLearningRateScheduler(LearningRateScheduler learningRateScheduler) Set the learningRateScheduler property: Type of learning rate scheduler. Must be 'warmup_cosine' or 'step'.- Overrides:
withLearningRateSchedulerin classImageModelSettings- Parameters:
learningRateScheduler- the learningRateScheduler value to set.- Returns:
- the ImageModelSettings object itself.
-
withModelName
Set the modelName property: Name of the model to use for training. For more information on the available models please visit the official documentation: https://docs.microsoft.com/en-us/azure/machine-learning/how-to-auto-train-image-models.- Overrides:
withModelNamein classImageModelSettings- Parameters:
modelName- the modelName value to set.- Returns:
- the ImageModelSettings object itself.
-
withMomentum
Set the momentum property: Value of momentum when optimizer is 'sgd'. Must be a float in the range [0, 1].- Overrides:
withMomentumin classImageModelSettings- Parameters:
momentum- the momentum value to set.- Returns:
- the ImageModelSettings object itself.
-
withNesterov
Set the nesterov property: Enable nesterov when optimizer is 'sgd'.- Overrides:
withNesterovin classImageModelSettings- Parameters:
nesterov- the nesterov value to set.- Returns:
- the ImageModelSettings object itself.
-
withNumberOfEpochs
Set the numberOfEpochs property: Number of training epochs. Must be a positive integer.- Overrides:
withNumberOfEpochsin classImageModelSettings- Parameters:
numberOfEpochs- the numberOfEpochs value to set.- Returns:
- the ImageModelSettings object itself.
-
withNumberOfWorkers
Set the numberOfWorkers property: Number of data loader workers. Must be a non-negative integer.- Overrides:
withNumberOfWorkersin classImageModelSettings- Parameters:
numberOfWorkers- the numberOfWorkers value to set.- Returns:
- the ImageModelSettings object itself.
-
withOptimizer
Set the optimizer property: Type of optimizer.- Overrides:
withOptimizerin classImageModelSettings- Parameters:
optimizer- the optimizer value to set.- Returns:
- the ImageModelSettings object itself.
-
withRandomSeed
Set the randomSeed property: Random seed to be used when using deterministic training.- Overrides:
withRandomSeedin classImageModelSettings- Parameters:
randomSeed- the randomSeed value to set.- Returns:
- the ImageModelSettings object itself.
-
withStepLRGamma
Set the stepLRGamma property: Value of gamma when learning rate scheduler is 'step'. Must be a float in the range [0, 1].- Overrides:
withStepLRGammain classImageModelSettings- Parameters:
stepLRGamma- the stepLRGamma value to set.- Returns:
- the ImageModelSettings object itself.
-
withStepLRStepSize
Set the stepLRStepSize property: Value of step size when learning rate scheduler is 'step'. Must be a positive integer.- Overrides:
withStepLRStepSizein classImageModelSettings- Parameters:
stepLRStepSize- the stepLRStepSize value to set.- Returns:
- the ImageModelSettings object itself.
-
withTrainingBatchSize
Set the trainingBatchSize property: Training batch size. Must be a positive integer.- Overrides:
withTrainingBatchSizein classImageModelSettings- Parameters:
trainingBatchSize- the trainingBatchSize value to set.- Returns:
- the ImageModelSettings object itself.
-
withValidationBatchSize
Set the validationBatchSize property: Validation batch size. Must be a positive integer.- Overrides:
withValidationBatchSizein classImageModelSettings- Parameters:
validationBatchSize- the validationBatchSize value to set.- Returns:
- the ImageModelSettings object itself.
-
withWarmupCosineLRCycles
Set the warmupCosineLRCycles property: Value of cosine cycle when learning rate scheduler is 'warmup_cosine'. Must be a float in the range [0, 1].- Overrides:
withWarmupCosineLRCyclesin classImageModelSettings- Parameters:
warmupCosineLRCycles- the warmupCosineLRCycles value to set.- Returns:
- the ImageModelSettings object itself.
-
withWarmupCosineLRWarmupEpochs
public ImageModelSettingsObjectDetection withWarmupCosineLRWarmupEpochs(Integer warmupCosineLRWarmupEpochs) Set the warmupCosineLRWarmupEpochs property: Value of warmup epochs when learning rate scheduler is 'warmup_cosine'. Must be a positive integer.- Overrides:
withWarmupCosineLRWarmupEpochsin classImageModelSettings- Parameters:
warmupCosineLRWarmupEpochs- the warmupCosineLRWarmupEpochs value to set.- Returns:
- the ImageModelSettings object itself.
-
withWeightDecay
Set the weightDecay property: Value of weight decay when optimizer is 'sgd', 'adam', or 'adamw'. Must be a float in the range[0, 1].- Overrides:
withWeightDecayin classImageModelSettings- Parameters:
weightDecay- the weightDecay value to set.- Returns:
- the ImageModelSettings object itself.
-
validate
public void validate()Validates the instance.- Overrides:
validatein classImageModelSettings- Throws:
IllegalArgumentException- thrown if the instance is not valid.
-
toJson
- Specified by:
toJsonin interfacecom.azure.json.JsonSerializable<ImageModelSettings>- Overrides:
toJsonin classImageModelSettings- Throws:
IOException
-
fromJson
public static ImageModelSettingsObjectDetection fromJson(com.azure.json.JsonReader jsonReader) throws IOException Reads an instance of ImageModelSettingsObjectDetection from the JsonReader.- Parameters:
jsonReader- The JsonReader being read.- Returns:
- An instance of ImageModelSettingsObjectDetection if the JsonReader was pointing to an instance of it, or null if it was pointing to JSON null.
- Throws:
IOException- If an error occurs while reading the ImageModelSettingsObjectDetection.
-