Class ImageModelDistributionSettingsObjectDetection
java.lang.Object
com.azure.resourcemanager.machinelearning.models.ImageModelDistributionSettings
com.azure.resourcemanager.machinelearning.models.ImageModelDistributionSettingsObjectDetection
- All Implemented Interfaces:
com.azure.json.JsonSerializable<ImageModelDistributionSettings>
public final class ImageModelDistributionSettingsObjectDetection
extends ImageModelDistributionSettings
Distribution expressions to sweep over values of model settings.
<example>
Some examples are:
```
ModelName = "choice('seresnext', 'resnest50')";
LearningRate = "uniform(0.001, 0.01)";
LayersToFreeze = "choice(0, 2)";
```</example>
For more details on how to compose distribution expressions please check the documentation:
https://docs.microsoft.com/en-us/azure/machine-learning/how-to-tune-hyperparameters
For more information on the available settings please visit the official documentation:
https://docs.microsoft.com/en-us/azure/machine-learning/how-to-auto-train-image-models.
-
Constructor Summary
ConstructorsConstructorDescriptionCreates an instance of ImageModelDistributionSettingsObjectDetection class. -
Method Summary
Modifier and TypeMethodDescriptionGet the boxDetectionsPerImage property: Maximum number of detections per image, for all classes.Get the boxScoreThreshold property: During inference, only return proposals with a classification score greater than BoxScoreThreshold.fromJson(com.azure.json.JsonReader jsonReader) Reads an instance of ImageModelDistributionSettingsObjectDetection from the JsonReader.Get the imageSize property: Image size for train and validation.maxSize()Get the maxSize property: Maximum size of the image to be rescaled before feeding it to the backbone.minSize()Get the minSize property: Minimum size of the image to be rescaled before feeding it to the backbone.Get the modelSize property: Model size.Get the multiScale property: Enable multi-scale image by varying image size by +/- 50%.Get the nmsIouThreshold property: IOU threshold used during inference in NMS post processing.Get the tileGridSize property: The grid size to use for tiling each image.Get the tileOverlapRatio property: Overlap ratio between adjacent tiles in each dimension.Get the tilePredictionsNmsThreshold property: The IOU threshold to use to perform NMS while merging predictions from tiles and image.com.azure.json.JsonWritertoJson(com.azure.json.JsonWriter jsonWriter) voidvalidate()Validates the instance.Get the validationIouThreshold property: IOU threshold to use when computing validation metric.Get the validationMetricType property: Metric computation method to use for validation metrics.withAmsGradient(String amsGradient) Set the amsGradient property: Enable AMSGrad when optimizer is 'adam' or 'adamw'.withAugmentations(String augmentations) Set the augmentations property: Settings for using Augmentations.Set the beta1 property: Value of 'beta1' when optimizer is 'adam' or 'adamw'.Set the beta2 property: Value of 'beta2' when optimizer is 'adam' or 'adamw'.withBoxDetectionsPerImage(String boxDetectionsPerImage) Set the boxDetectionsPerImage property: Maximum number of detections per image, for all classes.withBoxScoreThreshold(String boxScoreThreshold) Set the boxScoreThreshold property: During inference, only return proposals with a classification score greater than BoxScoreThreshold.withDistributed(String distributed) Set the distributed property: Whether to use distributer training.withEarlyStopping(String earlyStopping) Set the earlyStopping property: Enable early stopping logic during training.withEarlyStoppingDelay(String earlyStoppingDelay) Set the earlyStoppingDelay property: Minimum number of epochs or validation evaluations to wait before primary metric improvement is tracked for early stopping.withEarlyStoppingPatience(String earlyStoppingPatience) Set the earlyStoppingPatience property: Minimum number of epochs or validation evaluations with no primary metric improvement before the run is stopped.withEnableOnnxNormalization(String enableOnnxNormalization) Set the enableOnnxNormalization property: Enable normalization when exporting ONNX model.withEvaluationFrequency(String evaluationFrequency) Set the evaluationFrequency property: Frequency to evaluate validation dataset to get metric scores.withGradientAccumulationStep(String gradientAccumulationStep) Set the gradientAccumulationStep property: Gradient accumulation means running a configured number of "GradAccumulationStep" steps without updating the model weights while accumulating the gradients of those steps, and then using the accumulated gradients to compute the weight updates.withImageSize(String imageSize) Set the imageSize property: Image size for train and validation.withLayersToFreeze(String layersToFreeze) Set the layersToFreeze property: Number of layers to freeze for the model.withLearningRate(String learningRate) Set the learningRate property: Initial learning rate.withLearningRateScheduler(String learningRateScheduler) Set the learningRateScheduler property: Type of learning rate scheduler.withMaxSize(String maxSize) Set the maxSize property: Maximum size of the image to be rescaled before feeding it to the backbone.withMinSize(String minSize) Set the minSize property: Minimum size of the image to be rescaled before feeding it to the backbone.withModelName(String modelName) Set the modelName property: Name of the model to use for training.withModelSize(String modelSize) Set the modelSize property: Model size.withMomentum(String momentum) Set the momentum property: Value of momentum when optimizer is 'sgd'.withMultiScale(String multiScale) Set the multiScale property: Enable multi-scale image by varying image size by +/- 50%.withNesterov(String nesterov) Set the nesterov property: Enable nesterov when optimizer is 'sgd'.withNmsIouThreshold(String nmsIouThreshold) Set the nmsIouThreshold property: IOU threshold used during inference in NMS post processing.withNumberOfEpochs(String numberOfEpochs) Set the numberOfEpochs property: Number of training epochs.withNumberOfWorkers(String numberOfWorkers) Set the numberOfWorkers property: Number of data loader workers.withOptimizer(String optimizer) Set the optimizer property: Type of optimizer.withRandomSeed(String randomSeed) Set the randomSeed property: Random seed to be used when using deterministic training.withStepLRGamma(String stepLRGamma) Set the stepLRGamma property: Value of gamma when learning rate scheduler is 'step'.withStepLRStepSize(String stepLRStepSize) Set the stepLRStepSize property: Value of step size when learning rate scheduler is 'step'.withTileGridSize(String tileGridSize) Set the tileGridSize property: The grid size to use for tiling each image.withTileOverlapRatio(String tileOverlapRatio) Set the tileOverlapRatio property: Overlap ratio between adjacent tiles in each dimension.withTilePredictionsNmsThreshold(String tilePredictionsNmsThreshold) Set the tilePredictionsNmsThreshold property: The IOU threshold to use to perform NMS while merging predictions from tiles and image.withTrainingBatchSize(String trainingBatchSize) Set the trainingBatchSize property: Training batch size.withValidationBatchSize(String validationBatchSize) Set the validationBatchSize property: Validation batch size.withValidationIouThreshold(String validationIouThreshold) Set the validationIouThreshold property: IOU threshold to use when computing validation metric.withValidationMetricType(String validationMetricType) Set the validationMetricType property: Metric computation method to use for validation metrics.withWarmupCosineLRCycles(String warmupCosineLRCycles) Set the warmupCosineLRCycles property: Value of cosine cycle when learning rate scheduler is 'warmup_cosine'.withWarmupCosineLRWarmupEpochs(String warmupCosineLRWarmupEpochs) Set the warmupCosineLRWarmupEpochs property: Value of warmup epochs when learning rate scheduler is 'warmup_cosine'.withWeightDecay(String weightDecay) Set the weightDecay property: Value of weight decay when optimizer is 'sgd', 'adam', or 'adamw'.Methods inherited from class com.azure.resourcemanager.machinelearning.models.ImageModelDistributionSettings
amsGradient, augmentations, beta1, beta2, distributed, earlyStopping, earlyStoppingDelay, earlyStoppingPatience, enableOnnxNormalization, evaluationFrequency, gradientAccumulationStep, layersToFreeze, learningRate, learningRateScheduler, modelName, momentum, nesterov, numberOfEpochs, numberOfWorkers, optimizer, randomSeed, stepLRGamma, stepLRStepSize, trainingBatchSize, validationBatchSize, warmupCosineLRCycles, warmupCosineLRWarmupEpochs, weightDecayMethods inherited from class java.lang.Object
clone, equals, finalize, getClass, hashCode, notify, notifyAll, toString, wait, wait, waitMethods inherited from interface com.azure.json.JsonSerializable
toJson, toJson, toJsonBytes, toJsonString
-
Constructor Details
-
ImageModelDistributionSettingsObjectDetection
public ImageModelDistributionSettingsObjectDetection()Creates an instance of ImageModelDistributionSettingsObjectDetection class.
-
-
Method Details
-
boxDetectionsPerImage
Get the boxDetectionsPerImage property: Maximum number of detections per image, for all classes. Must be a positive integer. Note: This settings is not supported for the 'yolov5' algorithm.- Returns:
- the boxDetectionsPerImage value.
-
withBoxDetectionsPerImage
public ImageModelDistributionSettingsObjectDetection withBoxDetectionsPerImage(String boxDetectionsPerImage) Set the boxDetectionsPerImage property: Maximum number of detections per image, for all classes. Must be a positive integer. Note: This settings is not supported for the 'yolov5' algorithm.- Parameters:
boxDetectionsPerImage- the boxDetectionsPerImage value to set.- Returns:
- the ImageModelDistributionSettingsObjectDetection object itself.
-
boxScoreThreshold
Get the boxScoreThreshold property: During inference, only return proposals with a classification score greater than BoxScoreThreshold. Must be a float in the range[0, 1].- Returns:
- the boxScoreThreshold value.
-
withBoxScoreThreshold
public ImageModelDistributionSettingsObjectDetection withBoxScoreThreshold(String boxScoreThreshold) Set the boxScoreThreshold property: During inference, only return proposals with a classification score greater than BoxScoreThreshold. Must be a float in the range[0, 1].- Parameters:
boxScoreThreshold- the boxScoreThreshold value to set.- Returns:
- the ImageModelDistributionSettingsObjectDetection object itself.
-
imageSize
Get the imageSize property: Image size for train and validation. Must be a positive integer. Note: The training run may get into CUDA OOM if the size is too big. Note: This settings is only supported for the 'yolov5' algorithm.- Returns:
- the imageSize value.
-
withImageSize
Set the imageSize property: Image size for train and validation. Must be a positive integer. Note: The training run may get into CUDA OOM if the size is too big. Note: This settings is only supported for the 'yolov5' algorithm.- Parameters:
imageSize- the imageSize value to set.- Returns:
- the ImageModelDistributionSettingsObjectDetection object itself.
-
maxSize
Get the maxSize property: Maximum size of the image to be rescaled before feeding it to the backbone. Must be a positive integer. Note: training run may get into CUDA OOM if the size is too big. Note: This settings is not supported for the 'yolov5' algorithm.- Returns:
- the maxSize value.
-
withMaxSize
Set the maxSize property: Maximum size of the image to be rescaled before feeding it to the backbone. Must be a positive integer. Note: training run may get into CUDA OOM if the size is too big. Note: This settings is not supported for the 'yolov5' algorithm.- Parameters:
maxSize- the maxSize value to set.- Returns:
- the ImageModelDistributionSettingsObjectDetection object itself.
-
minSize
Get the minSize property: Minimum size of the image to be rescaled before feeding it to the backbone. Must be a positive integer. Note: training run may get into CUDA OOM if the size is too big. Note: This settings is not supported for the 'yolov5' algorithm.- Returns:
- the minSize value.
-
withMinSize
Set the minSize property: Minimum size of the image to be rescaled before feeding it to the backbone. Must be a positive integer. Note: training run may get into CUDA OOM if the size is too big. Note: This settings is not supported for the 'yolov5' algorithm.- Parameters:
minSize- the minSize value to set.- Returns:
- the ImageModelDistributionSettingsObjectDetection object itself.
-
modelSize
Get the modelSize property: Model size. Must be 'small', 'medium', 'large', or 'xlarge'. Note: training run may get into CUDA OOM if the model size is too big. Note: This settings is only supported for the 'yolov5' algorithm.- Returns:
- the modelSize value.
-
withModelSize
Set the modelSize property: Model size. Must be 'small', 'medium', 'large', or 'xlarge'. Note: training run may get into CUDA OOM if the model size is too big. Note: This settings is only supported for the 'yolov5' algorithm.- Parameters:
modelSize- the modelSize value to set.- Returns:
- the ImageModelDistributionSettingsObjectDetection object itself.
-
multiScale
Get the multiScale property: Enable multi-scale image by varying image size by +/- 50%. Note: training run may get into CUDA OOM if no sufficient GPU memory. Note: This settings is only supported for the 'yolov5' algorithm.- Returns:
- the multiScale value.
-
withMultiScale
Set the multiScale property: Enable multi-scale image by varying image size by +/- 50%. Note: training run may get into CUDA OOM if no sufficient GPU memory. Note: This settings is only supported for the 'yolov5' algorithm.- Parameters:
multiScale- the multiScale value to set.- Returns:
- the ImageModelDistributionSettingsObjectDetection object itself.
-
nmsIouThreshold
Get the nmsIouThreshold property: IOU threshold used during inference in NMS post processing. Must be float in the range [0, 1].- Returns:
- the nmsIouThreshold value.
-
withNmsIouThreshold
Set the nmsIouThreshold property: IOU threshold used during inference in NMS post processing. Must be float in the range [0, 1].- Parameters:
nmsIouThreshold- the nmsIouThreshold value to set.- Returns:
- the ImageModelDistributionSettingsObjectDetection object itself.
-
tileGridSize
Get the tileGridSize property: The grid size to use for tiling each image. Note: TileGridSize must not be None to enable small object detection logic. A string containing two integers in mxn format. Note: This settings is not supported for the 'yolov5' algorithm.- Returns:
- the tileGridSize value.
-
withTileGridSize
Set the tileGridSize property: The grid size to use for tiling each image. Note: TileGridSize must not be None to enable small object detection logic. A string containing two integers in mxn format. Note: This settings is not supported for the 'yolov5' algorithm.- Parameters:
tileGridSize- the tileGridSize value to set.- Returns:
- the ImageModelDistributionSettingsObjectDetection object itself.
-
tileOverlapRatio
Get the tileOverlapRatio property: Overlap ratio between adjacent tiles in each dimension. Must be float in the range [0, 1). Note: This settings is not supported for the 'yolov5' algorithm.- Returns:
- the tileOverlapRatio value.
-
withTileOverlapRatio
Set the tileOverlapRatio property: Overlap ratio between adjacent tiles in each dimension. Must be float in the range [0, 1). Note: This settings is not supported for the 'yolov5' algorithm.- Parameters:
tileOverlapRatio- the tileOverlapRatio value to set.- Returns:
- the ImageModelDistributionSettingsObjectDetection object itself.
-
tilePredictionsNmsThreshold
Get the tilePredictionsNmsThreshold property: The IOU threshold to use to perform NMS while merging predictions from tiles and image. Used in validation/ inference. Must be float in the range [0, 1]. Note: This settings is not supported for the 'yolov5' algorithm. NMS: Non-maximum suppression.- Returns:
- the tilePredictionsNmsThreshold value.
-
withTilePredictionsNmsThreshold
public ImageModelDistributionSettingsObjectDetection withTilePredictionsNmsThreshold(String tilePredictionsNmsThreshold) Set the tilePredictionsNmsThreshold property: The IOU threshold to use to perform NMS while merging predictions from tiles and image. Used in validation/ inference. Must be float in the range [0, 1]. Note: This settings is not supported for the 'yolov5' algorithm. NMS: Non-maximum suppression.- Parameters:
tilePredictionsNmsThreshold- the tilePredictionsNmsThreshold value to set.- Returns:
- the ImageModelDistributionSettingsObjectDetection object itself.
-
validationIouThreshold
Get the validationIouThreshold property: IOU threshold to use when computing validation metric. Must be float in the range [0, 1].- Returns:
- the validationIouThreshold value.
-
withValidationIouThreshold
public ImageModelDistributionSettingsObjectDetection withValidationIouThreshold(String validationIouThreshold) Set the validationIouThreshold property: IOU threshold to use when computing validation metric. Must be float in the range [0, 1].- Parameters:
validationIouThreshold- the validationIouThreshold value to set.- Returns:
- the ImageModelDistributionSettingsObjectDetection object itself.
-
validationMetricType
Get the validationMetricType property: Metric computation method to use for validation metrics. Must be 'none', 'coco', 'voc', or 'coco_voc'.- Returns:
- the validationMetricType value.
-
withValidationMetricType
public ImageModelDistributionSettingsObjectDetection withValidationMetricType(String validationMetricType) Set the validationMetricType property: Metric computation method to use for validation metrics. Must be 'none', 'coco', 'voc', or 'coco_voc'.- Parameters:
validationMetricType- the validationMetricType value to set.- Returns:
- the ImageModelDistributionSettingsObjectDetection object itself.
-
withAmsGradient
Set the amsGradient property: Enable AMSGrad when optimizer is 'adam' or 'adamw'.- Overrides:
withAmsGradientin classImageModelDistributionSettings- Parameters:
amsGradient- the amsGradient value to set.- Returns:
- the ImageModelDistributionSettings object itself.
-
withAugmentations
Set the augmentations property: Settings for using Augmentations.- Overrides:
withAugmentationsin classImageModelDistributionSettings- Parameters:
augmentations- the augmentations value to set.- Returns:
- the ImageModelDistributionSettings object itself.
-
withBeta1
Set the beta1 property: Value of 'beta1' when optimizer is 'adam' or 'adamw'. Must be a float in the range [0, 1].- Overrides:
withBeta1in classImageModelDistributionSettings- Parameters:
beta1- the beta1 value to set.- Returns:
- the ImageModelDistributionSettings object itself.
-
withBeta2
Set the beta2 property: Value of 'beta2' when optimizer is 'adam' or 'adamw'. Must be a float in the range [0, 1].- Overrides:
withBeta2in classImageModelDistributionSettings- Parameters:
beta2- the beta2 value to set.- Returns:
- the ImageModelDistributionSettings object itself.
-
withDistributed
Set the distributed property: Whether to use distributer training.- Overrides:
withDistributedin classImageModelDistributionSettings- Parameters:
distributed- the distributed value to set.- Returns:
- the ImageModelDistributionSettings object itself.
-
withEarlyStopping
Set the earlyStopping property: Enable early stopping logic during training.- Overrides:
withEarlyStoppingin classImageModelDistributionSettings- Parameters:
earlyStopping- the earlyStopping value to set.- Returns:
- the ImageModelDistributionSettings object itself.
-
withEarlyStoppingDelay
public ImageModelDistributionSettingsObjectDetection withEarlyStoppingDelay(String earlyStoppingDelay) Set the earlyStoppingDelay property: Minimum number of epochs or validation evaluations to wait before primary metric improvement is tracked for early stopping. Must be a positive integer.- Overrides:
withEarlyStoppingDelayin classImageModelDistributionSettings- Parameters:
earlyStoppingDelay- the earlyStoppingDelay value to set.- Returns:
- the ImageModelDistributionSettings object itself.
-
withEarlyStoppingPatience
public ImageModelDistributionSettingsObjectDetection withEarlyStoppingPatience(String earlyStoppingPatience) Set the earlyStoppingPatience property: Minimum number of epochs or validation evaluations with no primary metric improvement before the run is stopped. Must be a positive integer.- Overrides:
withEarlyStoppingPatiencein classImageModelDistributionSettings- Parameters:
earlyStoppingPatience- the earlyStoppingPatience value to set.- Returns:
- the ImageModelDistributionSettings object itself.
-
withEvaluationFrequency
public ImageModelDistributionSettingsObjectDetection withEvaluationFrequency(String evaluationFrequency) Set the evaluationFrequency property: Frequency to evaluate validation dataset to get metric scores. Must be a positive integer.- Overrides:
withEvaluationFrequencyin classImageModelDistributionSettings- Parameters:
evaluationFrequency- the evaluationFrequency value to set.- Returns:
- the ImageModelDistributionSettings object itself.
-
withEnableOnnxNormalization
public ImageModelDistributionSettingsObjectDetection withEnableOnnxNormalization(String enableOnnxNormalization) Set the enableOnnxNormalization property: Enable normalization when exporting ONNX model.- Overrides:
withEnableOnnxNormalizationin classImageModelDistributionSettings- Parameters:
enableOnnxNormalization- the enableOnnxNormalization value to set.- Returns:
- the ImageModelDistributionSettings object itself.
-
withGradientAccumulationStep
public ImageModelDistributionSettingsObjectDetection withGradientAccumulationStep(String gradientAccumulationStep) Set the gradientAccumulationStep property: Gradient accumulation means running a configured number of "GradAccumulationStep" steps without updating the model weights while accumulating the gradients of those steps, and then using the accumulated gradients to compute the weight updates. Must be a positive integer.- Overrides:
withGradientAccumulationStepin classImageModelDistributionSettings- Parameters:
gradientAccumulationStep- the gradientAccumulationStep value to set.- Returns:
- the ImageModelDistributionSettings object itself.
-
withLayersToFreeze
Set the layersToFreeze property: Number of layers to freeze for the model. Must be a positive integer. For instance, passing 2 as value for 'seresnext' means freezing layer0 and layer1. For a full list of models supported and details on layer freeze, please see: https://docs.microsoft.com/en-us/azure/machine-learning/how-to-auto-train-image-models.- Overrides:
withLayersToFreezein classImageModelDistributionSettings- Parameters:
layersToFreeze- the layersToFreeze value to set.- Returns:
- the ImageModelDistributionSettings object itself.
-
withLearningRate
Set the learningRate property: Initial learning rate. Must be a float in the range [0, 1].- Overrides:
withLearningRatein classImageModelDistributionSettings- Parameters:
learningRate- the learningRate value to set.- Returns:
- the ImageModelDistributionSettings object itself.
-
withLearningRateScheduler
public ImageModelDistributionSettingsObjectDetection withLearningRateScheduler(String learningRateScheduler) Set the learningRateScheduler property: Type of learning rate scheduler. Must be 'warmup_cosine' or 'step'.- Overrides:
withLearningRateSchedulerin classImageModelDistributionSettings- Parameters:
learningRateScheduler- the learningRateScheduler value to set.- Returns:
- the ImageModelDistributionSettings object itself.
-
withModelName
Set the modelName property: Name of the model to use for training. For more information on the available models please visit the official documentation: https://docs.microsoft.com/en-us/azure/machine-learning/how-to-auto-train-image-models.- Overrides:
withModelNamein classImageModelDistributionSettings- Parameters:
modelName- the modelName value to set.- Returns:
- the ImageModelDistributionSettings object itself.
-
withMomentum
Set the momentum property: Value of momentum when optimizer is 'sgd'. Must be a float in the range [0, 1].- Overrides:
withMomentumin classImageModelDistributionSettings- Parameters:
momentum- the momentum value to set.- Returns:
- the ImageModelDistributionSettings object itself.
-
withNesterov
Set the nesterov property: Enable nesterov when optimizer is 'sgd'.- Overrides:
withNesterovin classImageModelDistributionSettings- Parameters:
nesterov- the nesterov value to set.- Returns:
- the ImageModelDistributionSettings object itself.
-
withNumberOfEpochs
Set the numberOfEpochs property: Number of training epochs. Must be a positive integer.- Overrides:
withNumberOfEpochsin classImageModelDistributionSettings- Parameters:
numberOfEpochs- the numberOfEpochs value to set.- Returns:
- the ImageModelDistributionSettings object itself.
-
withNumberOfWorkers
Set the numberOfWorkers property: Number of data loader workers. Must be a non-negative integer.- Overrides:
withNumberOfWorkersin classImageModelDistributionSettings- Parameters:
numberOfWorkers- the numberOfWorkers value to set.- Returns:
- the ImageModelDistributionSettings object itself.
-
withOptimizer
Set the optimizer property: Type of optimizer. Must be either 'sgd', 'adam', or 'adamw'.- Overrides:
withOptimizerin classImageModelDistributionSettings- Parameters:
optimizer- the optimizer value to set.- Returns:
- the ImageModelDistributionSettings object itself.
-
withRandomSeed
Set the randomSeed property: Random seed to be used when using deterministic training.- Overrides:
withRandomSeedin classImageModelDistributionSettings- Parameters:
randomSeed- the randomSeed value to set.- Returns:
- the ImageModelDistributionSettings object itself.
-
withStepLRGamma
Set the stepLRGamma property: Value of gamma when learning rate scheduler is 'step'. Must be a float in the range [0, 1].- Overrides:
withStepLRGammain classImageModelDistributionSettings- Parameters:
stepLRGamma- the stepLRGamma value to set.- Returns:
- the ImageModelDistributionSettings object itself.
-
withStepLRStepSize
Set the stepLRStepSize property: Value of step size when learning rate scheduler is 'step'. Must be a positive integer.- Overrides:
withStepLRStepSizein classImageModelDistributionSettings- Parameters:
stepLRStepSize- the stepLRStepSize value to set.- Returns:
- the ImageModelDistributionSettings object itself.
-
withTrainingBatchSize
public ImageModelDistributionSettingsObjectDetection withTrainingBatchSize(String trainingBatchSize) Set the trainingBatchSize property: Training batch size. Must be a positive integer.- Overrides:
withTrainingBatchSizein classImageModelDistributionSettings- Parameters:
trainingBatchSize- the trainingBatchSize value to set.- Returns:
- the ImageModelDistributionSettings object itself.
-
withValidationBatchSize
public ImageModelDistributionSettingsObjectDetection withValidationBatchSize(String validationBatchSize) Set the validationBatchSize property: Validation batch size. Must be a positive integer.- Overrides:
withValidationBatchSizein classImageModelDistributionSettings- Parameters:
validationBatchSize- the validationBatchSize value to set.- Returns:
- the ImageModelDistributionSettings object itself.
-
withWarmupCosineLRCycles
public ImageModelDistributionSettingsObjectDetection withWarmupCosineLRCycles(String warmupCosineLRCycles) Set the warmupCosineLRCycles property: Value of cosine cycle when learning rate scheduler is 'warmup_cosine'. Must be a float in the range [0, 1].- Overrides:
withWarmupCosineLRCyclesin classImageModelDistributionSettings- Parameters:
warmupCosineLRCycles- the warmupCosineLRCycles value to set.- Returns:
- the ImageModelDistributionSettings object itself.
-
withWarmupCosineLRWarmupEpochs
public ImageModelDistributionSettingsObjectDetection withWarmupCosineLRWarmupEpochs(String warmupCosineLRWarmupEpochs) Set the warmupCosineLRWarmupEpochs property: Value of warmup epochs when learning rate scheduler is 'warmup_cosine'. Must be a positive integer.- Overrides:
withWarmupCosineLRWarmupEpochsin classImageModelDistributionSettings- Parameters:
warmupCosineLRWarmupEpochs- the warmupCosineLRWarmupEpochs value to set.- Returns:
- the ImageModelDistributionSettings object itself.
-
withWeightDecay
Set the weightDecay property: Value of weight decay when optimizer is 'sgd', 'adam', or 'adamw'. Must be a float in the range[0, 1].- Overrides:
withWeightDecayin classImageModelDistributionSettings- Parameters:
weightDecay- the weightDecay value to set.- Returns:
- the ImageModelDistributionSettings object itself.
-
validate
public void validate()Validates the instance.- Overrides:
validatein classImageModelDistributionSettings- Throws:
IllegalArgumentException- thrown if the instance is not valid.
-
toJson
- Specified by:
toJsonin interfacecom.azure.json.JsonSerializable<ImageModelDistributionSettings>- Overrides:
toJsonin classImageModelDistributionSettings- Throws:
IOException
-
fromJson
public static ImageModelDistributionSettingsObjectDetection fromJson(com.azure.json.JsonReader jsonReader) throws IOException Reads an instance of ImageModelDistributionSettingsObjectDetection from the JsonReader.- Parameters:
jsonReader- The JsonReader being read.- Returns:
- An instance of ImageModelDistributionSettingsObjectDetection if the JsonReader was pointing to an instance of it, or null if it was pointing to JSON null.
- Throws:
IOException- If an error occurs while reading the ImageModelDistributionSettingsObjectDetection.
-