Class ForecastingSettings
java.lang.Object
com.azure.resourcemanager.machinelearning.models.ForecastingSettings
- All Implemented Interfaces:
com.azure.json.JsonSerializable<ForecastingSettings>
public final class ForecastingSettings
extends Object
implements com.azure.json.JsonSerializable<ForecastingSettings>
Forecasting specific parameters.
-
Constructor Summary
Constructors -
Method Summary
Modifier and TypeMethodDescriptionGet the countryOrRegionForHolidays property: Country or region for holidays for forecasting tasks.Get the cvStepSize property: Number of periods between the origin time of one CV fold and the next fold.Get the featureLags property: Flag for generating lags for the numeric features with 'auto' or null.Get the forecastHorizon property: The desired maximum forecast horizon in units of time-series frequency.Get the frequency property: When forecasting, this parameter represents the period with which the forecast is desired, for example daily, weekly, yearly, etc.static ForecastingSettingsfromJson(com.azure.json.JsonReader jsonReader) Reads an instance of ForecastingSettings from the JsonReader.Get the seasonality property: Set time series seasonality as an integer multiple of the series frequency.Get the shortSeriesHandlingConfig property: The parameter defining how if AutoML should handle short time series.Get the targetAggregateFunction property: The function to be used to aggregate the time series target column to conform to a user specified frequency.Get the targetLags property: The number of past periods to lag from the target column.Get the targetRollingWindowSize property: The number of past periods used to create a rolling window average of the target column.Get the timeColumnName property: The name of the time column.Get the timeSeriesIdColumnNames property: The names of columns used to group a timeseries.com.azure.json.JsonWritertoJson(com.azure.json.JsonWriter jsonWriter) useStl()Get the useStl property: Configure STL Decomposition of the time-series target column.voidvalidate()Validates the instance.withCountryOrRegionForHolidays(String countryOrRegionForHolidays) Set the countryOrRegionForHolidays property: Country or region for holidays for forecasting tasks.withCvStepSize(Integer cvStepSize) Set the cvStepSize property: Number of periods between the origin time of one CV fold and the next fold.withFeatureLags(FeatureLags featureLags) Set the featureLags property: Flag for generating lags for the numeric features with 'auto' or null.withForecastHorizon(ForecastHorizon forecastHorizon) Set the forecastHorizon property: The desired maximum forecast horizon in units of time-series frequency.withFrequency(String frequency) Set the frequency property: When forecasting, this parameter represents the period with which the forecast is desired, for example daily, weekly, yearly, etc.withSeasonality(Seasonality seasonality) Set the seasonality property: Set time series seasonality as an integer multiple of the series frequency.withShortSeriesHandlingConfig(ShortSeriesHandlingConfiguration shortSeriesHandlingConfig) Set the shortSeriesHandlingConfig property: The parameter defining how if AutoML should handle short time series.withTargetAggregateFunction(TargetAggregationFunction targetAggregateFunction) Set the targetAggregateFunction property: The function to be used to aggregate the time series target column to conform to a user specified frequency.withTargetLags(TargetLags targetLags) Set the targetLags property: The number of past periods to lag from the target column.withTargetRollingWindowSize(TargetRollingWindowSize targetRollingWindowSize) Set the targetRollingWindowSize property: The number of past periods used to create a rolling window average of the target column.withTimeColumnName(String timeColumnName) Set the timeColumnName property: The name of the time column.withTimeSeriesIdColumnNames(List<String> timeSeriesIdColumnNames) Set the timeSeriesIdColumnNames property: The names of columns used to group a timeseries.withUseStl(UseStl useStl) Set the useStl property: Configure STL Decomposition of the time-series target column.Methods inherited from class java.lang.Object
clone, equals, finalize, getClass, hashCode, notify, notifyAll, toString, wait, wait, waitMethods inherited from interface com.azure.json.JsonSerializable
toJson, toJson, toJsonBytes, toJsonString
-
Constructor Details
-
ForecastingSettings
public ForecastingSettings()Creates an instance of ForecastingSettings class.
-
-
Method Details
-
countryOrRegionForHolidays
Get the countryOrRegionForHolidays property: Country or region for holidays for forecasting tasks. These should be ISO 3166 two-letter country/region codes, for example 'US' or 'GB'.- Returns:
- the countryOrRegionForHolidays value.
-
withCountryOrRegionForHolidays
Set the countryOrRegionForHolidays property: Country or region for holidays for forecasting tasks. These should be ISO 3166 two-letter country/region codes, for example 'US' or 'GB'.- Parameters:
countryOrRegionForHolidays- the countryOrRegionForHolidays value to set.- Returns:
- the ForecastingSettings object itself.
-
timeColumnName
Get the timeColumnName property: The name of the time column. This parameter is required when forecasting to specify the datetime column in the input data used for building the time series and inferring its frequency.- Returns:
- the timeColumnName value.
-
withTimeColumnName
Set the timeColumnName property: The name of the time column. This parameter is required when forecasting to specify the datetime column in the input data used for building the time series and inferring its frequency.- Parameters:
timeColumnName- the timeColumnName value to set.- Returns:
- the ForecastingSettings object itself.
-
targetLags
Get the targetLags property: The number of past periods to lag from the target column.- Returns:
- the targetLags value.
-
withTargetLags
Set the targetLags property: The number of past periods to lag from the target column.- Parameters:
targetLags- the targetLags value to set.- Returns:
- the ForecastingSettings object itself.
-
targetRollingWindowSize
Get the targetRollingWindowSize property: The number of past periods used to create a rolling window average of the target column.- Returns:
- the targetRollingWindowSize value.
-
withTargetRollingWindowSize
public ForecastingSettings withTargetRollingWindowSize(TargetRollingWindowSize targetRollingWindowSize) Set the targetRollingWindowSize property: The number of past periods used to create a rolling window average of the target column.- Parameters:
targetRollingWindowSize- the targetRollingWindowSize value to set.- Returns:
- the ForecastingSettings object itself.
-
forecastHorizon
Get the forecastHorizon property: The desired maximum forecast horizon in units of time-series frequency.- Returns:
- the forecastHorizon value.
-
withForecastHorizon
Set the forecastHorizon property: The desired maximum forecast horizon in units of time-series frequency.- Parameters:
forecastHorizon- the forecastHorizon value to set.- Returns:
- the ForecastingSettings object itself.
-
timeSeriesIdColumnNames
Get the timeSeriesIdColumnNames property: The names of columns used to group a timeseries. It can be used to create multiple series. If grain is not defined, the data set is assumed to be one time-series. This parameter is used with task type forecasting.- Returns:
- the timeSeriesIdColumnNames value.
-
withTimeSeriesIdColumnNames
Set the timeSeriesIdColumnNames property: The names of columns used to group a timeseries. It can be used to create multiple series. If grain is not defined, the data set is assumed to be one time-series. This parameter is used with task type forecasting.- Parameters:
timeSeriesIdColumnNames- the timeSeriesIdColumnNames value to set.- Returns:
- the ForecastingSettings object itself.
-
frequency
Get the frequency property: When forecasting, this parameter represents the period with which the forecast is desired, for example daily, weekly, yearly, etc. The forecast frequency is dataset frequency by default.- Returns:
- the frequency value.
-
withFrequency
Set the frequency property: When forecasting, this parameter represents the period with which the forecast is desired, for example daily, weekly, yearly, etc. The forecast frequency is dataset frequency by default.- Parameters:
frequency- the frequency value to set.- Returns:
- the ForecastingSettings object itself.
-
featureLags
Get the featureLags property: Flag for generating lags for the numeric features with 'auto' or null.- Returns:
- the featureLags value.
-
withFeatureLags
Set the featureLags property: Flag for generating lags for the numeric features with 'auto' or null.- Parameters:
featureLags- the featureLags value to set.- Returns:
- the ForecastingSettings object itself.
-
seasonality
Get the seasonality property: Set time series seasonality as an integer multiple of the series frequency. If seasonality is set to 'auto', it will be inferred.- Returns:
- the seasonality value.
-
withSeasonality
Set the seasonality property: Set time series seasonality as an integer multiple of the series frequency. If seasonality is set to 'auto', it will be inferred.- Parameters:
seasonality- the seasonality value to set.- Returns:
- the ForecastingSettings object itself.
-
shortSeriesHandlingConfig
Get the shortSeriesHandlingConfig property: The parameter defining how if AutoML should handle short time series.- Returns:
- the shortSeriesHandlingConfig value.
-
withShortSeriesHandlingConfig
public ForecastingSettings withShortSeriesHandlingConfig(ShortSeriesHandlingConfiguration shortSeriesHandlingConfig) Set the shortSeriesHandlingConfig property: The parameter defining how if AutoML should handle short time series.- Parameters:
shortSeriesHandlingConfig- the shortSeriesHandlingConfig value to set.- Returns:
- the ForecastingSettings object itself.
-
useStl
Get the useStl property: Configure STL Decomposition of the time-series target column.- Returns:
- the useStl value.
-
withUseStl
Set the useStl property: Configure STL Decomposition of the time-series target column.- Parameters:
useStl- the useStl value to set.- Returns:
- the ForecastingSettings object itself.
-
targetAggregateFunction
Get the targetAggregateFunction property: The function to be used to aggregate the time series target column to conform to a user specified frequency. If the TargetAggregateFunction is set i.e. not 'None', but the freq parameter is not set, the error is raised. The possible target aggregation functions are: "sum", "max", "min" and "mean".- Returns:
- the targetAggregateFunction value.
-
withTargetAggregateFunction
public ForecastingSettings withTargetAggregateFunction(TargetAggregationFunction targetAggregateFunction) Set the targetAggregateFunction property: The function to be used to aggregate the time series target column to conform to a user specified frequency. If the TargetAggregateFunction is set i.e. not 'None', but the freq parameter is not set, the error is raised. The possible target aggregation functions are: "sum", "max", "min" and "mean".- Parameters:
targetAggregateFunction- the targetAggregateFunction value to set.- Returns:
- the ForecastingSettings object itself.
-
cvStepSize
Get the cvStepSize property: Number of periods between the origin time of one CV fold and the next fold. For example, if `CVStepSize` = 3 for daily data, the origin time for each fold will be three days apart.- Returns:
- the cvStepSize value.
-
withCvStepSize
Set the cvStepSize property: Number of periods between the origin time of one CV fold and the next fold. For example, if `CVStepSize` = 3 for daily data, the origin time for each fold will be three days apart.- Parameters:
cvStepSize- the cvStepSize value to set.- Returns:
- the ForecastingSettings object itself.
-
validate
public void validate()Validates the instance.- Throws:
IllegalArgumentException- thrown if the instance is not valid.
-
toJson
- Specified by:
toJsonin interfacecom.azure.json.JsonSerializable<ForecastingSettings>- Throws:
IOException
-
fromJson
Reads an instance of ForecastingSettings from the JsonReader.- Parameters:
jsonReader- The JsonReader being read.- Returns:
- An instance of ForecastingSettings if the JsonReader was pointing to an instance of it, or null if it was pointing to JSON null.
- Throws:
IOException- If an error occurs while reading the ForecastingSettings.
-