Source code for azure.ai.projects.operations._patch

# pylint: disable=too-many-lines
# ------------------------------------
# Copyright (c) Microsoft Corporation.
# Licensed under the MIT License.
# ------------------------------------
"""Customize generated code here.

Follow our quickstart for examples: https://aka.ms/azsdk/python/dpcodegen/python/customize
"""
import io
import logging
import os
import sys
import time
from pathlib import Path
from typing import (
    IO,
    TYPE_CHECKING,
    Any,
    Dict,
    Iterator,
    List,
    Optional,
    Sequence,
    TextIO,
    Union,
    cast,
    overload,
)

from azure.core.exceptions import ResourceNotFoundError
from azure.core.tracing.decorator import distributed_trace

from .. import models as _models
from .._vendor import FileType
from ..models._enums import AuthenticationType, ConnectionType, FilePurpose, RunStatus
from ..models._models import (
    GetAppInsightsResponse,
    GetConnectionResponse,
    GetWorkspaceResponse,
    InternalConnectionPropertiesSASAuth,
    ListConnectionsResponse,
)
from ..models._patch import ConnectionProperties
from ._operations import AgentsOperations as AgentsOperationsGenerated
from ._operations import ConnectionsOperations as ConnectionsOperationsGenerated
from ._operations import TelemetryOperations as TelemetryOperationsGenerated

if sys.version_info >= (3, 9):
    from collections.abc import MutableMapping
else:
    from typing import MutableMapping  # type: ignore  # pylint: disable=ungrouped-imports

if TYPE_CHECKING:
    # pylint: disable=unused-import,ungrouped-imports
    from openai import AzureOpenAI

    from azure.ai.inference import ChatCompletionsClient, EmbeddingsClient, ImageEmbeddingsClient

    from .. import _types

JSON = MutableMapping[str, Any]  # pylint: disable=unsubscriptable-object
_Unset: Any = object()

logger = logging.getLogger(__name__)


[docs] class InferenceOperations: def __init__(self, outer_instance): # All returned inference clients will have this application id set on their user-agent. # For more info on user-agent HTTP header, see: # https://azure.github.io/azure-sdk/general_azurecore.html#telemetry-policy USER_AGENT_APP_ID = "AIProjectClient" if hasattr(outer_instance, "_user_agent") and outer_instance._user_agent: # If the calling application has set "user_agent" when constructing the AIProjectClient, # take that value and prepend it to USER_AGENT_APP_ID. self._user_agent = f"{outer_instance._user_agent}-{USER_AGENT_APP_ID}" else: self._user_agent = USER_AGENT_APP_ID self._outer_instance = outer_instance
[docs] @distributed_trace def get_chat_completions_client( self, *, connection_name: Optional[str] = None, **kwargs ) -> "ChatCompletionsClient": """Get an authenticated ChatCompletionsClient (from the package azure-ai-inference) for the default Azure AI Services connected resource (if `connection_name` is not specificed), or from the Azure AI Services resource given by its connection name. Keyword arguments are passed to the constructor of ChatCompletionsClient. At least one AI model that supports chat completions must be deployed in this resource. .. note:: The package `azure-ai-inference` must be installed prior to calling this method. :keyword connection_name: The name of a connection to an Azure AI Services resource in your AI Foundry project. resource. Optional. If not provided, the default Azure AI Services connection will be used. :type connection_name: str :return: An authenticated chat completions client. :rtype: ~azure.ai.inference.ChatCompletionsClient :raises ~azure.core.exceptions.ResourceNotFoundError: if an Azure AI Services connection does not exist. :raises ~azure.core.exceptions.ModuleNotFoundError: if the `azure-ai-inference` package is not installed. :raises ValueError: if the connection name is an empty string. :raises ~azure.core.exceptions.HttpResponseError: """ kwargs.setdefault("merge_span", True) if connection_name is not None and not connection_name: raise ValueError("Connection name cannot be empty") # Back-door way to access the old behavior where each AI model (non-OpenAI) was hosted on # a separate "Serverless" connection. This is now deprecated. use_serverless_connection: bool = os.getenv("USE_SERVERLESS_CONNECTION", None) == "true" if connection_name: connection = self._outer_instance.connections.get(connection_name=connection_name, include_credentials=True) else: if use_serverless_connection: connection = self._outer_instance.connections.get_default( connection_type=ConnectionType.SERVERLESS, include_credentials=True ) else: connection = self._outer_instance.connections.get_default( connection_type=ConnectionType.AZURE_AI_SERVICES, include_credentials=True ) logger.debug("[InferenceOperations.get_chat_completions_client] connection = %s", str(connection)) try: from azure.ai.inference import ChatCompletionsClient except ModuleNotFoundError as e: raise ModuleNotFoundError( "Azure AI Inference SDK is not installed. Please install it using 'pip install azure-ai-inference'" ) from e if use_serverless_connection: endpoint = connection.endpoint_url credential_scopes = ["https://ml.azure.com/.default"] else: endpoint = f"{connection.endpoint_url}/models" credential_scopes = ["https://cognitiveservices.azure.com/.default"] if connection.authentication_type == AuthenticationType.API_KEY: logger.debug( "[InferenceOperations.get_chat_completions_client] " + "Creating ChatCompletionsClient using API key authentication" ) from azure.core.credentials import AzureKeyCredential client = ChatCompletionsClient( endpoint=endpoint, credential=AzureKeyCredential(connection.key), user_agent=kwargs.pop("user_agent", self._user_agent), **kwargs, ) elif connection.authentication_type == AuthenticationType.ENTRA_ID: logger.debug( "[InferenceOperations.get_chat_completions_client] " + "Creating ChatCompletionsClient using Entra ID authentication" ) client = ChatCompletionsClient( endpoint=endpoint, credential=connection.token_credential, credential_scopes=credential_scopes, user_agent=kwargs.pop("user_agent", self._user_agent), **kwargs, ) elif connection.authentication_type == AuthenticationType.SAS: logger.debug( "[InferenceOperations.get_chat_completions_client] " + "Creating ChatCompletionsClient using SAS authentication" ) raise ValueError( "Getting chat completions client from a connection with SAS authentication is not yet supported" ) else: raise ValueError("Unknown authentication type") return client
[docs] @distributed_trace def get_embeddings_client(self, *, connection_name: Optional[str] = None, **kwargs) -> "EmbeddingsClient": """Get an authenticated EmbeddingsClient (from the package azure-ai-inference) for the default Azure AI Services connected resource (if `connection_name` is not specificed), or from the Azure AI Services resource given by its connection name. Keyword arguments are passed to the constructor of EmbeddingsClient. At least one AI model that supports text embeddings must be deployed in this resource. .. note:: The package `azure-ai-inference` must be installed prior to calling this method. :keyword connection_name: The name of a connection to an Azure AI Services resource in your AI Foundry project. resource. Optional. If not provided, the default Azure AI Services connection will be used. :type connection_name: str :return: An authenticated text embeddings client :rtype: ~azure.ai.inference.EmbeddingsClient :raises ~azure.core.exceptions.ResourceNotFoundError: if an Azure AI Services connection does not exist. :raises ~azure.core.exceptions.ModuleNotFoundError: if the `azure-ai-inference` package is not installed. :raises ValueError: if the connection name is an empty string. :raises ~azure.core.exceptions.HttpResponseError: """ kwargs.setdefault("merge_span", True) if connection_name is not None and not connection_name: raise ValueError("Connection name cannot be empty") # Back-door way to access the old behavior where each AI model (non-OpenAI) was hosted on # a separate "Serverless" connection. This is now deprecated. use_serverless_connection: bool = os.getenv("USE_SERVERLESS_CONNECTION", None) == "true" if connection_name: connection = self._outer_instance.connections.get(connection_name=connection_name, include_credentials=True) else: if use_serverless_connection: connection = self._outer_instance.connections.get_default( connection_type=ConnectionType.SERVERLESS, include_credentials=True ) else: connection = self._outer_instance.connections.get_default( connection_type=ConnectionType.AZURE_AI_SERVICES, include_credentials=True ) logger.debug("[InferenceOperations.get_embeddings_client] connection = %s", str(connection)) try: from azure.ai.inference import EmbeddingsClient except ModuleNotFoundError as e: raise ModuleNotFoundError( "Azure AI Inference SDK is not installed. Please install it using 'pip install azure-ai-inference'" ) from e if use_serverless_connection: endpoint = connection.endpoint_url credential_scopes = ["https://ml.azure.com/.default"] else: endpoint = f"{connection.endpoint_url}/models" credential_scopes = ["https://cognitiveservices.azure.com/.default"] if connection.authentication_type == AuthenticationType.API_KEY: logger.debug( "[InferenceOperations.get_embeddings_client] Creating EmbeddingsClient using API key authentication" ) from azure.core.credentials import AzureKeyCredential client = EmbeddingsClient( endpoint=endpoint, credential=AzureKeyCredential(connection.key), user_agent=kwargs.pop("user_agent", self._user_agent), **kwargs, ) elif connection.authentication_type == AuthenticationType.ENTRA_ID: logger.debug( "[InferenceOperations.get_embeddings_client] Creating EmbeddingsClient using Entra ID authentication" ) client = EmbeddingsClient( endpoint=endpoint, credential=connection.token_credential, credential_scopes=credential_scopes, user_agent=kwargs.pop("user_agent", self._user_agent), **kwargs, ) elif connection.authentication_type == AuthenticationType.SAS: logger.debug( "[InferenceOperations.get_embeddings_client] Creating EmbeddingsClient using SAS authentication" ) raise ValueError("Getting embeddings client from a connection with SAS authentication is not yet supported") else: raise ValueError("Unknown authentication type") return client
[docs] @distributed_trace def get_image_embeddings_client( self, *, connection_name: Optional[str] = None, **kwargs ) -> "ImageEmbeddingsClient": """Get an authenticated ImageEmbeddingsClient (from the package azure-ai-inference) for the default Azure AI Services connected resource (if `connection_name` is not specificed), or from the Azure AI Services resource given by its connection name. Keyword arguments are passed to the constructor of ImageEmbeddingsClient. At least one AI model that supports image embeddings must be deployed in this resource. .. note:: The package `azure-ai-inference` must be installed prior to calling this method. :keyword connection_name: The name of a connection to an Azure AI Services resource in your AI Foundry project. resource. Optional. If not provided, the default Azure AI Services connection will be used. :type connection_name: str :return: An authenticated image embeddings client :rtype: ~azure.ai.inference.ImageEmbeddingsClient :raises ~azure.core.exceptions.ResourceNotFoundError: if an Azure AI Services connection does not exist. :raises ~azure.core.exceptions.ModuleNotFoundError: if the `azure-ai-inference` package is not installed. :raises ValueError: if the connection name is an empty string. :raises ~azure.core.exceptions.HttpResponseError: """ kwargs.setdefault("merge_span", True) if connection_name is not None and not connection_name: raise ValueError("Connection name cannot be empty") # Back-door way to access the old behavior where each AI model (non-OpenAI) was hosted on # a separate "Serverless" connection. This is now deprecated. use_serverless_connection: bool = os.getenv("USE_SERVERLESS_CONNECTION", None) == "true" if connection_name: connection = self._outer_instance.connections.get(connection_name=connection_name, include_credentials=True) else: if use_serverless_connection: connection = self._outer_instance.connections.get_default( connection_type=ConnectionType.SERVERLESS, include_credentials=True ) else: connection = self._outer_instance.connections.get_default( connection_type=ConnectionType.AZURE_AI_SERVICES, include_credentials=True ) logger.debug("[InferenceOperations.get_embeddings_client] connection = %s", str(connection)) try: from azure.ai.inference import ImageEmbeddingsClient except ModuleNotFoundError as e: raise ModuleNotFoundError( "Azure AI Inference SDK is not installed. Please install it using 'pip install azure-ai-inference'" ) from e if use_serverless_connection: endpoint = connection.endpoint_url credential_scopes = ["https://ml.azure.com/.default"] else: endpoint = f"{connection.endpoint_url}/models" credential_scopes = ["https://cognitiveservices.azure.com/.default"] if connection.authentication_type == AuthenticationType.API_KEY: logger.debug( "[InferenceOperations.get_image_embeddings_client] " "Creating ImageEmbeddingsClient using API key authentication" ) from azure.core.credentials import AzureKeyCredential client = ImageEmbeddingsClient( endpoint=endpoint, credential=AzureKeyCredential(connection.key), user_agent=kwargs.pop("user_agent", self._user_agent), **kwargs, ) elif connection.authentication_type == AuthenticationType.ENTRA_ID: logger.debug( "[InferenceOperations.get_image_embeddings_client] " "Creating ImageEmbeddingsClient using Entra ID authentication" ) client = ImageEmbeddingsClient( endpoint=endpoint, credential=connection.token_credential, credential_scopes=credential_scopes, user_agent=kwargs.pop("user_agent", self._user_agent), **kwargs, ) elif connection.authentication_type == AuthenticationType.SAS: logger.debug( "[InferenceOperations.get_image_embeddings_client] " "Creating ImageEmbeddingsClient using SAS authentication" ) raise ValueError( "Getting image embeddings client from a connection with SAS authentication is not yet supported" ) else: raise ValueError("Unknown authentication type") return client
[docs] @distributed_trace def get_azure_openai_client( self, *, api_version: Optional[str] = None, connection_name: Optional[str] = None, **kwargs ) -> "AzureOpenAI": """Get an authenticated AzureOpenAI client (from the `openai` package) for the default Azure OpenAI connection (if `connection_name` is not specificed), or from the Azure OpenAI resource given by its connection name. .. note:: The package `openai` must be installed prior to calling this method. :keyword api_version: The Azure OpenAI api-version to use when creating the client. Optional. See "Data plane - Inference" row in the table at https://learn.microsoft.com/azure/ai-services/openai/reference#api-specs. If this keyword is not specified, you must set the environment variable `OPENAI_API_VERSION` instead. :paramtype api_version: str :keyword connection_name: The name of a connection to an Azure OpenAI resource in your AI Foundry project. resource. Optional. If not provided, the default Azure OpenAI connection will be used. :type connection_name: str :return: An authenticated AzureOpenAI client :rtype: ~openai.AzureOpenAI :raises ~azure.core.exceptions.ResourceNotFoundError: if an Azure OpenAI connection does not exist. :raises ~azure.core.exceptions.ModuleNotFoundError: if the `openai` package is not installed. :raises ValueError: if the connection name is an empty string. :raises ~azure.core.exceptions.HttpResponseError: """ kwargs.setdefault("merge_span", True) if connection_name is not None and not connection_name: raise ValueError("Connection name cannot be empty") if connection_name: connection = self._outer_instance.connections.get( connection_name=connection_name, include_credentials=True, **kwargs ) else: connection = self._outer_instance.connections.get_default( connection_type=ConnectionType.AZURE_OPEN_AI, include_credentials=True, **kwargs ) logger.debug("[InferenceOperations.get_azure_openai_client] connection = %s", str(connection)) try: from openai import AzureOpenAI except ModuleNotFoundError as e: raise ModuleNotFoundError( "OpenAI SDK is not installed. Please install it using 'pip install openai'" ) from e if connection.authentication_type == AuthenticationType.API_KEY: logger.debug( "[InferenceOperations.get_azure_openai_client] Creating AzureOpenAI using API key authentication" ) client = AzureOpenAI( api_key=connection.key, azure_endpoint=connection.endpoint_url, api_version=api_version ) elif connection.authentication_type == AuthenticationType.ENTRA_ID: logger.debug( "[InferenceOperations.get_azure_openai_client] " + "Creating AzureOpenAI using Entra ID authentication" ) try: from azure.identity import get_bearer_token_provider except ModuleNotFoundError as e: raise ModuleNotFoundError( "azure.identity package not installed. Please install it using 'pip install azure.identity'" ) from e client = AzureOpenAI( # See https://learn.microsoft.com/python/api/azure-identity/azure.identity?view=azure-python#azure-identity-get-bearer-token-provider # pylint: disable=line-too-long azure_ad_token_provider=get_bearer_token_provider( connection.token_credential, "https://cognitiveservices.azure.com/.default" ), azure_endpoint=connection.endpoint_url, api_version=api_version, ) elif connection.authentication_type == AuthenticationType.SAS: logger.debug( "[InferenceOperations.get_azure_openai_client] " + "Creating AzureOpenAI using SAS authentication" ) raise ValueError( "Getting an AzureOpenAI client from a connection with SAS authentication is not yet supported" ) else: raise ValueError("Unknown authentication type") return client
[docs] class ConnectionsOperations(ConnectionsOperationsGenerated):
[docs] @distributed_trace def get_default( self, *, connection_type: ConnectionType, include_credentials: bool = False, **kwargs: Any ) -> ConnectionProperties: """Get the properties of the default connection of a certain connection type, with or without populating authentication credentials. Raises ~azure.core.exceptions.ResourceNotFoundError exception if there are no connections of the given type. .. note:: `get_default(connection_type=ConnectionType.AZURE_BLOB_STORAGE, include_credentials=True)` does not currently work. It does work with `include_credentials=False`. :keyword connection_type: The connection type. Required. :type connection_type: ~azure.ai.projects.models._models.ConnectionType :keyword include_credentials: Whether to populate the connection properties with authentication credentials. Optional. :type include_credentials: bool :return: The connection properties. :rtype: ~azure.ai.projects.models.ConnectionProperties :raises ~azure.core.exceptions.ResourceNotFoundError: :raises ~azure.core.exceptions.HttpResponseError: """ kwargs.setdefault("merge_span", True) if not connection_type: raise ValueError("You must specify an connection type") # Since there is no notion of default connection at the moment, list all connections in the category # and return the first one (index 0), unless overridden by the environment variable DEFAULT_CONNECTION_INDEX. connection_properties_list = self.list(connection_type=connection_type, **kwargs) if len(connection_properties_list) > 0: default_connection_index = int(os.getenv("DEFAULT_CONNECTION_INDEX", "0")) if include_credentials: return self.get( connection_name=connection_properties_list[default_connection_index].name, include_credentials=include_credentials, **kwargs, ) return connection_properties_list[default_connection_index] raise ResourceNotFoundError(f"No connection of type {connection_type} found")
[docs] @distributed_trace def get(self, *, connection_name: str, include_credentials: bool = False, **kwargs: Any) -> ConnectionProperties: """Get the properties of a single connection, given its connection name, with or without populating authentication credentials. Raises ~azure.core.exceptions.ResourceNotFoundError exception if a connection with the given name was not found. .. note:: This method is not supported for Azure Blob Storage connections. :keyword connection_name: Connection Name. Required. :type connection_name: str :keyword include_credentials: Whether to populate the connection properties with authentication credentials. Optional. :type include_credentials: bool :return: The connection properties, or `None` if a connection with this name does not exist. :rtype: ~azure.ai.projects.models.ConnectionProperties :raises ~azure.core.exceptions.ResourceNotFoundError: :raises ~azure.core.exceptions.HttpResponseError: """ kwargs.setdefault("merge_span", True) if not connection_name: raise ValueError("Connection name cannot be empty") if include_credentials: connection: GetConnectionResponse = self._get_connection_with_secrets( connection_name=connection_name, ignored="ignore", **kwargs ) if connection.properties.auth_type == AuthenticationType.ENTRA_ID: return ConnectionProperties(connection=connection, token_credential=self._config.credential) if connection.properties.auth_type == AuthenticationType.SAS: from ..models._patch import SASTokenCredential cred_prop = cast(InternalConnectionPropertiesSASAuth, connection.properties) token_credential = SASTokenCredential( sas_token=cred_prop.credentials.sas, credential=self._config.credential, subscription_id=self._config.subscription_id, resource_group_name=self._config.resource_group_name, project_name=self._config.project_name, connection_name=connection_name, ) return ConnectionProperties(connection=connection, token_credential=token_credential) return ConnectionProperties(connection=connection) connection = self._get_connection(connection_name=connection_name, **kwargs) return ConnectionProperties(connection=connection)
[docs] @distributed_trace def list( self, *, connection_type: Optional[ConnectionType] = None, **kwargs: Any ) -> Sequence[ConnectionProperties]: """List the properties of all connections, or all connections of a certain connection type. :keyword connection_type: The connection type. Optional. If provided, this method lists connections of this type. If not provided, all connections are listed. :type connection_type: ~azure.ai.projects.models._models.ConnectionType :return: A list of connection properties :rtype: Sequence[~azure.ai.projects.models._models.ConnectionProperties] :raises ~azure.core.exceptions.HttpResponseError: """ kwargs.setdefault("merge_span", True) connections_list: ListConnectionsResponse = self._list_connections( include_all=True, category=connection_type, **kwargs ) # Iterate to create the simplified result property connection_properties_list: List[ConnectionProperties] = [] for connection in connections_list.value: connection_properties_list.append(ConnectionProperties(connection=connection)) return connection_properties_list
# Internal helper functions to enable OpenTelemetry, used by both sync and async clients def _get_trace_exporter(destination: Union[TextIO, str, None]) -> Any: if isinstance(destination, str): # `destination` is the OTLP endpoint # See: https://opentelemetry-python.readthedocs.io/en/latest/exporter/otlp/otlp.html#usage try: from opentelemetry.exporter.otlp.proto.grpc.trace_exporter import OTLPSpanExporter # type: ignore except ModuleNotFoundError as e: raise ModuleNotFoundError( "OpenTelemetry OTLP exporter is not installed. " + "Please install it using 'pip install opentelemetry-exporter-otlp-proto-grpc'" ) from e return OTLPSpanExporter(endpoint=destination) if isinstance(destination, io.TextIOWrapper): if destination is sys.stdout: # See: https://opentelemetry-python.readthedocs.io/en/latest/sdk/trace.export.html#opentelemetry.sdk.trace.export.ConsoleSpanExporter # pylint: disable=line-too-long try: from opentelemetry.sdk.trace.export import ConsoleSpanExporter except ModuleNotFoundError as e: raise ModuleNotFoundError( "OpenTelemetry SDK is not installed. Please install it using 'pip install opentelemetry-sdk'" ) from e return ConsoleSpanExporter() raise ValueError("Only `sys.stdout` is supported at the moment for type `TextIO`") return None def _get_log_exporter(destination: Union[TextIO, str, None]) -> Any: if isinstance(destination, str): # `destination` is the OTLP endpoint # See: https://opentelemetry-python.readthedocs.io/en/latest/exporter/otlp/otlp.html#usage try: # _logs are considered beta (not internal) in OpenTelemetry Python API/SDK. # So it's ok to use it for local development, but we'll swallow # any errors in case of any breaking changes on OTel side. from opentelemetry.exporter.otlp.proto.grpc._log_exporter import OTLPLogExporter # type: ignore # pylint: disable=import-error,no-name-in-module except Exception as ex: # pylint: disable=broad-exception-caught # since OTel logging is still in beta in Python, we're going to swallow any errors # and just warn about them. logger.warning("Failed to configure OpenTelemetry logging.", exc_info=ex) return None return OTLPLogExporter(endpoint=destination) if isinstance(destination, io.TextIOWrapper): if destination is sys.stdout: # See: https://opentelemetry-python.readthedocs.io/en/latest/sdk/trace.export.html#opentelemetry.sdk.trace.export.ConsoleSpanExporter # pylint: disable=line-too-long try: from opentelemetry.sdk._logs.export import ConsoleLogExporter return ConsoleLogExporter() except ModuleNotFoundError as ex: # since OTel logging is still in beta in Python, we're going to swallow any errors # and just warn about them. logger.warning("Failed to configure OpenTelemetry logging.", exc_info=ex) return None raise ValueError("Only `sys.stdout` is supported at the moment for type `TextIO`") return None def _configure_tracing(span_exporter: Any) -> None: if span_exporter is None: return try: from opentelemetry import trace from opentelemetry.sdk.trace import TracerProvider from opentelemetry.sdk.trace.export import SimpleSpanProcessor except ModuleNotFoundError as e: raise ModuleNotFoundError( "OpenTelemetry SDK is not installed. Please install it using 'pip install opentelemetry-sdk'" ) from e # if tracing was not setup before, we need to create a new TracerProvider if not isinstance(trace.get_tracer_provider(), TracerProvider): # If the provider is NoOpTracerProvider, we need to create a new TracerProvider provider = TracerProvider() trace.set_tracer_provider(provider) # get_tracer_provider returns opentelemetry.trace.TracerProvider # however, we have opentelemetry.sdk.trace.TracerProvider, which implements # add_span_processor method, though we need to cast it to fix type checking. provider = cast(TracerProvider, trace.get_tracer_provider()) provider.add_span_processor(SimpleSpanProcessor(span_exporter)) def _configure_logging(log_exporter: Any) -> None: if log_exporter is None: return try: # _events and _logs are considered beta (not internal) in # OpenTelemetry Python API/SDK. # So it's ok to use them for local development, but we'll swallow # any errors in case of any breaking changes on OTel side. from opentelemetry import _logs, _events from opentelemetry.sdk._logs import LoggerProvider # pylint: disable=import-error,no-name-in-module from opentelemetry.sdk._events import EventLoggerProvider # pylint: disable=import-error,no-name-in-module from opentelemetry.sdk._logs.export import ( SimpleLogRecordProcessor, ) # pylint: disable=import-error,no-name-in-module if not isinstance(_logs.get_logger_provider(), LoggerProvider): logger_provider = LoggerProvider() _logs.set_logger_provider(logger_provider) # get_logger_provider returns opentelemetry._logs.LoggerProvider # however, we have opentelemetry.sdk._logs.LoggerProvider, which implements # add_log_record_processor method, though we need to cast it to fix type checking. logger_provider = cast(LoggerProvider, _logs.get_logger_provider()) logger_provider.add_log_record_processor(SimpleLogRecordProcessor(log_exporter)) _events.set_event_logger_provider(EventLoggerProvider(logger_provider)) except Exception as ex: # pylint: disable=broad-exception-caught # since OTel logging is still in beta in Python, we're going to swallow any errors # and just warn about them. logger.warning("Failed to configure OpenTelemetry logging.", exc_info=ex) def _enable_telemetry(destination: Union[TextIO, str, None], **kwargs) -> None: # pylint: disable=unused-argument """Enable tracing and logging to console (sys.stdout), or to an OpenTelemetry Protocol (OTLP) endpoint. :param destination: `sys.stdout` to print telemetry to console or a string holding the OpenTelemetry protocol (OTLP) endpoint. If not provided, this method enables instrumentation, but does not configure OpenTelemetry SDK to export traces and logs. :type destination: Union[TextIO, str, None] """ span_exporter = _get_trace_exporter(destination) _configure_tracing(span_exporter) log_exporter = _get_log_exporter(destination) _configure_logging(log_exporter) # Silently try to load a set of relevant Instrumentors try: from azure.core.settings import settings settings.tracing_implementation = "opentelemetry" except ModuleNotFoundError: logger.warning( "Azure SDK tracing plugin is not installed. " + "Please install it using 'pip install azure-core-tracing-opentelemetry'" ) try: from azure.ai.inference.tracing import AIInferenceInstrumentor # type: ignore inference_instrumentor = AIInferenceInstrumentor() if not inference_instrumentor.is_instrumented(): inference_instrumentor.instrument() except ModuleNotFoundError: logger.warning( "Could not call `AIInferenceInstrumentor().instrument()` since `azure-ai-inference` is not installed" ) try: from azure.ai.projects.telemetry.agents import AIAgentsInstrumentor agents_instrumentor = AIAgentsInstrumentor() if not agents_instrumentor.is_instrumented(): agents_instrumentor.instrument() except Exception as exc: # pylint: disable=broad-exception-caught logger.warning("Could not call `AIAgentsInstrumentor().instrument()`", exc_info=exc) try: from opentelemetry.instrumentation.openai_v2 import OpenAIInstrumentor # type: ignore OpenAIInstrumentor().instrument() except ModuleNotFoundError: logger.warning( "Could not call `OpenAIInstrumentor().instrument()` since " + "`opentelemetry-instrumentation-openai-v2` is not installed" ) try: from opentelemetry.instrumentation.langchain import LangchainInstrumentor # type: ignore LangchainInstrumentor().instrument() except ModuleNotFoundError: logger.warning( "Could not call LangchainInstrumentor().instrument()` since " + "`opentelemetry-instrumentation-langchain` is not installed" )
[docs] class TelemetryOperations(TelemetryOperationsGenerated): _connection_string: Optional[str] = None def __init__(self, *args, **kwargs): self._outer_instance = kwargs.pop("outer_instance") super().__init__(*args, **kwargs)
[docs] def get_connection_string(self) -> str: """Get the Application Insights connection string associated with the Project's Application Insights resource. :return: The Application Insights connection string if a the resource was enabled for the Project. :rtype: str :raises ~azure.core.exceptions.ResourceNotFoundError: An Application Insights resource was not enabled for this project. """ if not self._connection_string: # Get the AI Foundry project properties, including Application Insights resource URL if exists get_workspace_response: GetWorkspaceResponse = ( self._outer_instance.connections._get_workspace() # pylint: disable=protected-access ) if not get_workspace_response.properties.application_insights: raise ResourceNotFoundError("Application Insights resource was not enabled for this Project.") # Make a GET call to the Application Insights resource URL to get the connection string app_insights_respose: GetAppInsightsResponse = self._get_app_insights( app_insights_resource_url=get_workspace_response.properties.application_insights ) self._connection_string = app_insights_respose.properties.connection_string return self._connection_string
# TODO: what about `set AZURE_TRACING_GEN_AI_CONTENT_RECORDING_ENABLED=true`? # TODO: This could be a class method. But we don't have a class property AIProjectClient.telemetry
[docs] def enable(self, *, destination: Union[TextIO, str, None] = None, **kwargs) -> None: """Enables telemetry collection with OpenTelemetry for Azure AI clients and popular GenAI libraries. Following instrumentations are enabled (when corresponding packages are installed): - Azure AI Inference (`azure-ai-inference`) - Azure AI Projects (`azure-ai-projects`) - OpenAI (`opentelemetry-instrumentation-openai-v2`) - Langchain (`opentelemetry-instrumentation-langchain`) The recording of prompt and completion messages is disabled by default. To enable it, set the `AZURE_TRACING_GEN_AI_CONTENT_RECORDING_ENABLED` environment variable to `true`. When destination is provided, the method configures OpenTelemetry SDK to export traces to stdout or OTLP (OpenTelemetry protocol) gRPC endpoint. It's recommended for local development only. For production use, make sure to configure OpenTelemetry SDK directly. :keyword destination: Recommended for local testing only. Set it to `sys.stdout` for tracing to console output, or a string holding the OpenTelemetry protocol (OTLP) endpoint such as "http://localhost:4317. If not provided, the method enables instrumentations, but does not configure OpenTelemetry SDK to export traces. :paramtype destination: Union[TextIO, str, None] """ _enable_telemetry(destination=destination, **kwargs)
[docs] class AgentsOperations(AgentsOperationsGenerated): def __init__(self, *args, **kwargs) -> None: super().__init__(*args, **kwargs) self._toolset: Dict[str, _models.ToolSet] = {} # pylint: disable=arguments-differ @overload def create_agent( # pylint: disable=arguments-differ self, *, model: str, content_type: str = "application/json", name: Optional[str] = None, description: Optional[str] = None, instructions: Optional[str] = None, tools: Optional[List[_models.ToolDefinition]] = None, tool_resources: Optional[_models.ToolResources] = None, temperature: Optional[float] = None, top_p: Optional[float] = None, response_format: Optional["_types.AgentsApiResponseFormatOption"] = None, metadata: Optional[Dict[str, str]] = None, **kwargs: Any, ) -> _models.Agent: """Creates a new agent. :keyword model: The ID of the model to use. Required. :paramtype model: str :keyword content_type: Body Parameter content-type. Content type parameter for JSON body. Default value is "application/json". :paramtype content_type: str :keyword name: The name of the new agent. Default value is None. :paramtype name: str :keyword description: The description of the new agent. Default value is None. :paramtype description: str :keyword instructions: The system instructions for the new agent to use. Default value is None. :paramtype instructions: str :keyword tools: The collection of tools to enable for the new agent. Default value is None. :paramtype tools: list[~azure.ai.projects.models.ToolDefinition] :keyword tool_resources: A set of resources that are used by the agent's tools. The resources are specific to the type of tool. For example, the ``code_interpreter`` tool requires a list of file IDs, while the ``file_search`` tool requires a list of vector store IDs. Default value is None. :paramtype tool_resources: ~azure.ai.projects.models.ToolResources :keyword temperature: What sampling temperature to use, between 0 and 2. Higher values like 0.8 will make the output more random, while lower values like 0.2 will make it more focused and deterministic. Default value is None. :paramtype temperature: float :keyword top_p: An alternative to sampling with temperature, called nucleus sampling, where the model considers the results of the tokens with top_p probability mass. So 0.1 means only the tokens comprising the top 10% probability mass are considered. We generally recommend altering this or temperature but not both. Default value is None. :paramtype top_p: float :keyword response_format: The response format of the tool calls used by this agent. Is one of the following types: str, Union[str, "_models.AgentsApiResponseFormatMode"], AgentsApiResponseFormat Default value is None. :paramtype response_format: str or str or ~azure.ai.projects.models.AgentsApiResponseFormatMode or ~azure.ai.projects.models.AgentsApiResponseFormat :keyword metadata: A set of up to 16 key/value pairs that can be attached to an object, used for storing additional information about that object in a structured format. Keys may be up to 64 characters in length and values may be up to 512 characters in length. Default value is None. :paramtype metadata: dict[str, str] :return: Agent. The Agent is compatible with MutableMapping :rtype: ~azure.ai.projects.models.Agent :raises ~azure.core.exceptions.HttpResponseError: """ # pylint: disable=arguments-differ @overload def create_agent( # pylint: disable=arguments-differ self, *, model: str, content_type: str = "application/json", name: Optional[str] = None, description: Optional[str] = None, instructions: Optional[str] = None, toolset: Optional[_models.ToolSet] = None, temperature: Optional[float] = None, top_p: Optional[float] = None, response_format: Optional["_types.AgentsApiResponseFormatOption"] = None, metadata: Optional[Dict[str, str]] = None, **kwargs: Any, ) -> _models.Agent: """Creates a new agent. :keyword model: The ID of the model to use. Required. :paramtype model: str :keyword content_type: Body Parameter content-type. Content type parameter for JSON body. Default value is "application/json". :paramtype content_type: str :keyword name: The name of the new agent. Default value is None. :paramtype name: str :keyword description: The description of the new agent. Default value is None. :paramtype description: str :keyword instructions: The system instructions for the new agent to use. Default value is None. :paramtype instructions: str :keyword toolset: The Collection of tools and resources (alternative to `tools` and `tool_resources` and adds automatic execution logic for functions). Default value is None. :paramtype toolset: ~azure.ai.projects.models.ToolSet :keyword temperature: What sampling temperature to use, between 0 and 2. Higher values like 0.8 will make the output more random, while lower values like 0.2 will make it more focused and deterministic. Default value is None. :paramtype temperature: float :keyword top_p: An alternative to sampling with temperature, called nucleus sampling, where the model considers the results of the tokens with top_p probability mass. So 0.1 means only the tokens comprising the top 10% probability mass are considered. We generally recommend altering this or temperature but not both. Default value is None. :paramtype top_p: float :keyword response_format: The response format of the tool calls used by this agent. Is one of the following types: str, Union[str, "_models.AgentsApiResponseFormatMode"], AgentsApiResponseFormat Default value is None. :paramtype response_format: str or str or ~azure.ai.projects.models.AgentsApiResponseFormatMode or ~azure.ai.projects.models.AgentsApiResponseFormat :keyword metadata: A set of up to 16 key/value pairs that can be attached to an object, used for storing additional information about that object in a structured format. Keys may be up to 64 characters in length and values may be up to 512 characters in length. Default value is None. :paramtype metadata: dict[str, str] :return: Agent. The Agent is compatible with MutableMapping :rtype: ~azure.ai.projects.models.Agent :raises ~azure.core.exceptions.HttpResponseError: """ @overload def create_agent(self, body: JSON, *, content_type: str = "application/json", **kwargs: Any) -> _models.Agent: """Creates a new agent. :param body: Required. :type body: JSON :keyword content_type: Body Parameter content-type. Content type parameter for JSON body. Default value is "application/json". :paramtype content_type: str :return: Agent. The Agent is compatible with MutableMapping :rtype: ~azure.ai.projects.models.Agent :raises ~azure.core.exceptions.HttpResponseError: """ @overload def create_agent(self, body: IO[bytes], *, content_type: str = "application/json", **kwargs: Any) -> _models.Agent: """Creates a new agent. :param body: Required. :type body: IO[bytes] :keyword content_type: Body Parameter content-type. Content type parameter for binary body. Default value is "application/json". :paramtype content_type: str :return: Agent. The Agent is compatible with MutableMapping :rtype: ~azure.ai.projects.models.Agent :raises ~azure.core.exceptions.HttpResponseError: """
[docs] @distributed_trace def create_agent( self, body: Union[JSON, IO[bytes]] = _Unset, *, model: str = _Unset, name: Optional[str] = None, description: Optional[str] = None, instructions: Optional[str] = None, tools: Optional[List[_models.ToolDefinition]] = None, tool_resources: Optional[_models.ToolResources] = None, toolset: Optional[_models.ToolSet] = None, temperature: Optional[float] = None, top_p: Optional[float] = None, response_format: Optional["_types.AgentsApiResponseFormatOption"] = None, metadata: Optional[Dict[str, str]] = None, content_type: str = "application/json", **kwargs: Any, ) -> _models.Agent: """ Creates a new agent with various configurations, delegating to the generated operations. :param body: JSON or IO[bytes]. Required if `model` is not provided. :type body: Union[JSON, IO[bytes]] :keyword model: The ID of the model to use. Required if `body` is not provided. :paramtype model: str :keyword name: The name of the new agent. :paramtype name: Optional[str] :keyword description: A description for the new agent. :paramtype description: Optional[str] :keyword instructions: System instructions for the agent. :paramtype instructions: Optional[str] :keyword tools: List of tools definitions for the agent. :paramtype tools: Optional[List[_models.ToolDefinition]] :keyword tool_resources: Resources used by the agent's tools. :paramtype tool_resources: Optional[_models.ToolResources] :keyword toolset: Collection of tools and resources (alternative to `tools` and `tool_resources` and adds automatic execution logic for functions). :paramtype toolset: Optional[_models.ToolSet] :keyword temperature: Sampling temperature for generating agent responses. :paramtype temperature: Optional[float] :keyword top_p: Nucleus sampling parameter. :paramtype top_p: Optional[float] :keyword response_format: Response format for tool calls. :paramtype response_format: Optional["_types.AgentsApiResponseFormatOption"] :keyword metadata: Key/value pairs for storing additional information. :paramtype metadata: Optional[Dict[str, str]] :keyword content_type: Content type of the body. :paramtype content_type: str :return: An Agent object. :rtype: _models.Agent :raises: HttpResponseError for HTTP errors. """ self._validate_tools_and_tool_resources(tools, tool_resources) if body is not _Unset: if isinstance(body, io.IOBase): return super().create_agent(body=body, content_type=content_type, **kwargs) return super().create_agent(body=body, **kwargs) if toolset is not None: tools = toolset.definitions tool_resources = toolset.resources new_agent = super().create_agent( model=model, name=name, description=description, instructions=instructions, tools=tools, tool_resources=tool_resources, temperature=temperature, top_p=top_p, response_format=response_format, metadata=metadata, **kwargs, ) if toolset is not None: self._toolset[new_agent.id] = toolset return new_agent
# pylint: disable=arguments-differ @overload def update_agent( # pylint: disable=arguments-differ self, assistant_id: str, *, content_type: str = "application/json", model: Optional[str] = None, name: Optional[str] = None, description: Optional[str] = None, instructions: Optional[str] = None, tools: Optional[List[_models.ToolDefinition]] = None, tool_resources: Optional[_models.ToolResources] = None, temperature: Optional[float] = None, top_p: Optional[float] = None, response_format: Optional["_types.AgentsApiResponseFormatOption"] = None, metadata: Optional[Dict[str, str]] = None, **kwargs: Any, ) -> _models.Agent: """Modifies an existing agent. :param assistant_id: The ID of the agent to modify. Required. :type assistant_id: str :keyword content_type: Body Parameter content-type. Content type parameter for JSON body. Default value is "application/json". :paramtype content_type: str :keyword model: The ID of the model to use. Default value is None. :paramtype model: str :keyword name: The modified name for the agent to use. Default value is None. :paramtype name: str :keyword description: The modified description for the agent to use. Default value is None. :paramtype description: str :keyword instructions: The modified system instructions for the new agent to use. Default value is None. :paramtype instructions: str :keyword tools: The modified collection of tools to enable for the agent. Default value is None. :paramtype tools: list[~azure.ai.projects.models.ToolDefinition] :keyword tool_resources: A set of resources that are used by the agent's tools. The resources are specific to the type of tool. For example, the ``code_interpreter`` tool requires a list of file IDs, while the ``file_search`` tool requires a list of vector store IDs. Default value is None. :paramtype tool_resources: ~azure.ai.projects.models.ToolResources :keyword temperature: What sampling temperature to use, between 0 and 2. Higher values like 0.8 will make the output more random, while lower values like 0.2 will make it more focused and deterministic. Default value is None. :paramtype temperature: float :keyword top_p: An alternative to sampling with temperature, called nucleus sampling, where the model considers the results of the tokens with top_p probability mass. So 0.1 means only the tokens comprising the top 10% probability mass are considered. We generally recommend altering this or temperature but not both. Default value is None. :paramtype top_p: float :keyword response_format: The response format of the tool calls used by this agent. Is one of the following types: str, Union[str, "_models.AgentsApiResponseFormatMode"], AgentsApiResponseFormat Default value is None. :paramtype response_format: str or str or ~azure.ai.projects.models.AgentsApiResponseFormatMode or ~azure.ai.projects.models.AgentsApiResponseFormat :keyword metadata: A set of up to 16 key/value pairs that can be attached to an object, used for storing additional information about that object in a structured format. Keys may be up to 64 characters in length and values may be up to 512 characters in length. Default value is None. :paramtype metadata: dict[str, str] :return: Agent. The Agent is compatible with MutableMapping :rtype: ~azure.ai.projects.models.Agent :raises ~azure.core.exceptions.HttpResponseError: """ # pylint: disable=arguments-differ @overload def update_agent( # pylint: disable=arguments-differ self, assistant_id: str, *, content_type: str = "application/json", model: Optional[str] = None, name: Optional[str] = None, description: Optional[str] = None, instructions: Optional[str] = None, toolset: Optional[_models.ToolSet] = None, temperature: Optional[float] = None, top_p: Optional[float] = None, response_format: Optional["_types.AgentsApiResponseFormatOption"] = None, metadata: Optional[Dict[str, str]] = None, **kwargs: Any, ) -> _models.Agent: """Modifies an existing agent. :param assistant_id: The ID of the agent to modify. Required. :type assistant_id: str :keyword content_type: Body Parameter content-type. Content type parameter for JSON body. Default value is "application/json". :paramtype content_type: str :keyword model: The ID of the model to use. Default value is None. :paramtype model: str :keyword name: The modified name for the agent to use. Default value is None. :paramtype name: str :keyword description: The modified description for the agent to use. Default value is None. :paramtype description: str :keyword instructions: The modified system instructions for the new agent to use. Default value is None. :paramtype instructions: str :keyword toolset: The Collection of tools and resources (alternative to `tools` and `tool_resources` and adds automatic execution logic for functions). Default value is None. :paramtype toolset: ~azure.ai.projects.models.ToolSet :keyword temperature: What sampling temperature to use, between 0 and 2. Higher values like 0.8 will make the output more random, while lower values like 0.2 will make it more focused and deterministic. Default value is None. :paramtype temperature: float :keyword top_p: An alternative to sampling with temperature, called nucleus sampling, where the model considers the results of the tokens with top_p probability mass. So 0.1 means only the tokens comprising the top 10% probability mass are considered. We generally recommend altering this or temperature but not both. Default value is None. :paramtype top_p: float :keyword response_format: The response format of the tool calls used by this agent. Is one of the following types: str, Union[str, "_models.AgentsApiResponseFormatMode"], AgentsApiResponseFormat Default value is None. :paramtype response_format: str or str or ~azure.ai.projects.models.AgentsApiResponseFormatMode or ~azure.ai.projects.models.AgentsApiResponseFormat :keyword metadata: A set of up to 16 key/value pairs that can be attached to an object, used for storing additional information about that object in a structured format. Keys may be up to 64 characters in length and values may be up to 512 characters in length. Default value is None. :paramtype metadata: dict[str, str] :return: Agent. The Agent is compatible with MutableMapping :rtype: ~azure.ai.projects.models.Agent :raises ~azure.core.exceptions.HttpResponseError: """ @overload def update_agent( self, assistant_id: str, body: JSON, *, content_type: str = "application/json", **kwargs: Any ) -> _models.Agent: """Modifies an existing agent. :param assistant_id: The ID of the agent to modify. Required. :type assistant_id: str :param body: Required. :type body: JSON :keyword content_type: Body Parameter content-type. Content type parameter for JSON body. Default value is "application/json". :paramtype content_type: str :return: Agent. The Agent is compatible with MutableMapping :rtype: ~azure.ai.projects.models.Agent :raises ~azure.core.exceptions.HttpResponseError: """ @overload def update_agent( self, assistant_id: str, body: IO[bytes], *, content_type: str = "application/json", **kwargs: Any ) -> _models.Agent: """Modifies an existing agent. :param assistant_id: The ID of the agent to modify. Required. :type assistant_id: str :param body: Required. :type body: IO[bytes] :keyword content_type: Body Parameter content-type. Content type parameter for binary body. Default value is "application/json". :paramtype content_type: str :return: Agent. The Agent is compatible with MutableMapping :rtype: ~azure.ai.projects.models.Agent :raises ~azure.core.exceptions.HttpResponseError: """
[docs] @distributed_trace def update_agent( self, assistant_id: str, body: Union[JSON, IO[bytes]] = _Unset, *, model: Optional[str] = None, name: Optional[str] = None, description: Optional[str] = None, instructions: Optional[str] = None, tools: Optional[List[_models.ToolDefinition]] = None, tool_resources: Optional[_models.ToolResources] = None, toolset: Optional[_models.ToolSet] = None, temperature: Optional[float] = None, top_p: Optional[float] = None, response_format: Optional["_types.AgentsApiResponseFormatOption"] = None, content_type: str = "application/json", metadata: Optional[Dict[str, str]] = None, **kwargs: Any, ) -> _models.Agent: """Modifies an existing agent. :param assistant_id: The ID of the agent to modify. Required. :type assistant_id: str :param body: Is either a JSON type or a IO[bytes] type. Required. :type body: JSON or IO[bytes] :keyword model: The ID of the model to use. Default value is None. :paramtype model: str :keyword name: The modified name for the agent to use. Default value is None. :paramtype name: str :keyword description: The modified description for the agent to use. Default value is None. :paramtype description: str :keyword instructions: The modified system instructions for the new agent to use. Default value is None. :paramtype instructions: str :keyword tools: The modified collection of tools to enable for the agent. Default value is None. :paramtype tools: list[~azure.ai.projects.models.ToolDefinition] :keyword tool_resources: A set of resources that are used by the agent's tools. The resources are specific to the type of tool. For example, the ``code_interpreter`` tool requires a list of file IDs, while the ``file_search`` tool requires a list of vector store IDs. Default value is None. :paramtype tool_resources: ~azure.ai.projects.models.ToolResources :keyword toolset: The Collection of tools and resources (alternative to `tools` and `tool_resources` and adds automatic execution logic for functions). Default value is None. :paramtype toolset: ~azure.ai.projects.models.ToolSet :keyword temperature: What sampling temperature to use, between 0 and 2. Higher values like 0.8 will make the output more random, while lower values like 0.2 will make it more focused and deterministic. Default value is None. :paramtype temperature: float :keyword top_p: An alternative to sampling with temperature, called nucleus sampling, where the model considers the results of the tokens with top_p probability mass. So 0.1 means only the tokens comprising the top 10% probability mass are considered. We generally recommend altering this or temperature but not both. Default value is None. :paramtype top_p: float :keyword response_format: The response format of the tool calls used by this agent. Is one of the following types: str, Union[str, "_models.AgentsApiResponseFormatMode"], AgentsApiResponseFormat Default value is None. :paramtype response_format: str or str or ~azure.ai.projects.models.AgentsApiResponseFormatMode or ~azure.ai.projects.models.AgentsApiResponseFormat :keyword content_type: Body Parameter content-type. Content type parameter for JSON body. Default value is "application/json". :paramtype content_type: str :keyword metadata: A set of up to 16 key/value pairs that can be attached to an object, used for storing additional information about that object in a structured format. Keys may be up to 64 characters in length and values may be up to 512 characters in length. Default value is None. :paramtype metadata: dict[str, str] :return: Agent. The Agent is compatible with MutableMapping :rtype: ~azure.ai.projects.models.Agent :raises ~azure.core.exceptions.HttpResponseError: """ self._validate_tools_and_tool_resources(tools, tool_resources) if body is not _Unset: if isinstance(body, io.IOBase): return super().update_agent(body=body, content_type=content_type, **kwargs) return super().update_agent(body=body, **kwargs) if toolset is not None: self._toolset[assistant_id] = toolset tools = toolset.definitions tool_resources = toolset.resources return super().update_agent( assistant_id=assistant_id, model=model, name=name, description=description, instructions=instructions, tools=tools, tool_resources=tool_resources, temperature=temperature, top_p=top_p, response_format=response_format, metadata=metadata, **kwargs, )
def _validate_tools_and_tool_resources( self, tools: Optional[List[_models.ToolDefinition]], tool_resources: Optional[_models.ToolResources] ): if tool_resources is None: return if tools is None: tools = [] if tool_resources.file_search is not None and not any( isinstance(tool, _models.FileSearchToolDefinition) for tool in tools ): raise ValueError( "Tools must contain a FileSearchToolDefinition when tool_resources.file_search is provided" ) if tool_resources.code_interpreter is not None and not any( isinstance(tool, _models.CodeInterpreterToolDefinition) for tool in tools ): raise ValueError( "Tools must contain a CodeInterpreterToolDefinition when tool_resources.code_interpreter is provided" ) # pylint: disable=arguments-differ @overload def create_run( # pylint: disable=arguments-differ self, thread_id: str, *, assistant_id: str, include: Optional[List[Union[str, _models.RunAdditionalFieldList]]] = None, content_type: str = "application/json", model: Optional[str] = None, instructions: Optional[str] = None, additional_instructions: Optional[str] = None, additional_messages: Optional[List[_models.ThreadMessageOptions]] = None, tools: Optional[List[_models.ToolDefinition]] = None, temperature: Optional[float] = None, top_p: Optional[float] = None, max_prompt_tokens: Optional[int] = None, max_completion_tokens: Optional[int] = None, truncation_strategy: Optional[_models.TruncationObject] = None, tool_choice: Optional["_types.AgentsApiToolChoiceOption"] = None, response_format: Optional["_types.AgentsApiResponseFormatOption"] = None, parallel_tool_calls: Optional[bool] = None, metadata: Optional[Dict[str, str]] = None, **kwargs: Any, ) -> _models.ThreadRun: """Creates a new run for an agent thread. :param thread_id: Required. :type thread_id: str :keyword assistant_id: The ID of the agent that should run the thread. Required. :paramtype assistant_id: str :keyword include: A list of additional fields to include in the response. Currently the only supported value is ``step_details.tool_calls[*].file_search.results[*].content`` to fetch the file search result content. Default value is None. :paramtype include: list[str or ~azure.ai.projects.models.RunAdditionalFieldList] :keyword content_type: Body Parameter content-type. Content type parameter for JSON body. Default value is "application/json". :paramtype content_type: str :keyword model: The overridden model name that the agent should use to run the thread. Default value is None. :paramtype model: str :keyword instructions: The overridden system instructions that the agent should use to run the thread. Default value is None. :paramtype instructions: str :keyword additional_instructions: Additional instructions to append at the end of the instructions for the run. This is useful for modifying the behavior on a per-run basis without overriding other instructions. Default value is None. :paramtype additional_instructions: str :keyword additional_messages: Adds additional messages to the thread before creating the run. Default value is None. :paramtype additional_messages: list[~azure.ai.projects.models.ThreadMessageOptions] :keyword tools: The overridden list of enabled tools that the agent should use to run the thread. Default value is None. :paramtype tools: list[~azure.ai.projects.models.ToolDefinition] :keyword temperature: What sampling temperature to use, between 0 and 2. Higher values like 0.8 will make the output more random, while lower values like 0.2 will make it more focused and deterministic. Default value is None. :paramtype temperature: float :keyword top_p: An alternative to sampling with temperature, called nucleus sampling, where the model considers the results of the tokens with top_p probability mass. So 0.1 means only the tokens comprising the top 10% probability mass are considered. We generally recommend altering this or temperature but not both. Default value is None. :paramtype top_p: float :keyword max_prompt_tokens: The maximum number of prompt tokens that may be used over the course of the run. The run will make a best effort to use only the number of prompt tokens specified, across multiple turns of the run. If the run exceeds the number of prompt tokens specified, the run will end with status ``incomplete``. See ``incomplete_details`` for more info. Default value is None. :paramtype max_prompt_tokens: int :keyword max_completion_tokens: The maximum number of completion tokens that may be used over the course of the run. The run will make a best effort to use only the number of completion tokens specified, across multiple turns of the run. If the run exceeds the number of completion tokens specified, the run will end with status ``incomplete``. See ``incomplete_details`` for more info. Default value is None. :paramtype max_completion_tokens: int :keyword truncation_strategy: The strategy to use for dropping messages as the context windows moves forward. Default value is None. :paramtype truncation_strategy: ~azure.ai.projects.models.TruncationObject :keyword tool_choice: Controls whether or not and which tool is called by the model. Is one of the following types: str, Union[str, "_models.AgentsApiToolChoiceOptionMode"], AgentsNamedToolChoice Default value is None. :paramtype tool_choice: str or str or ~azure.ai.projects.models.AgentsApiToolChoiceOptionMode or ~azure.ai.projects.models.AgentsNamedToolChoice :keyword response_format: Specifies the format that the model must output. Is one of the following types: str, Union[str, "_models.AgentsApiResponseFormatMode"], AgentsApiResponseFormat Default value is None. :paramtype response_format: str or str or ~azure.ai.projects.models.AgentsApiResponseFormatMode or ~azure.ai.projects.models.AgentsApiResponseFormat :keyword parallel_tool_calls: If ``true`` functions will run in parallel during tool use. Default value is None. :paramtype parallel_tool_calls: bool :keyword metadata: A set of up to 16 key/value pairs that can be attached to an object, used for storing additional information about that object in a structured format. Keys may be up to 64 characters in length and values may be up to 512 characters in length. Default value is None. :paramtype metadata: dict[str, str] :return: ThreadRun. The ThreadRun is compatible with MutableMapping :rtype: ~azure.ai.projects.models.ThreadRun :raises ~azure.core.exceptions.HttpResponseError: """ @overload def create_run( self, thread_id: str, body: JSON, *, include: Optional[List[Union[str, _models.RunAdditionalFieldList]]] = None, content_type: str = "application/json", **kwargs: Any, ) -> _models.ThreadRun: """Creates a new run for an agent thread. :param thread_id: Required. :type thread_id: str :param body: Required. :type body: JSON :keyword include: A list of additional fields to include in the response. Currently the only supported value is ``step_details.tool_calls[*].file_search.results[*].content`` to fetch the file search result content. Default value is None. :paramtype include: list[str or ~azure.ai.projects.models.RunAdditionalFieldList] :keyword content_type: Body Parameter content-type. Content type parameter for JSON body. Default value is "application/json". :paramtype content_type: str :return: ThreadRun. The ThreadRun is compatible with MutableMapping :rtype: ~azure.ai.projects.models.ThreadRun :raises ~azure.core.exceptions.HttpResponseError: """ @overload def create_run( self, thread_id: str, body: IO[bytes], *, include: Optional[List[Union[str, _models.RunAdditionalFieldList]]] = None, content_type: str = "application/json", **kwargs: Any, ) -> _models.ThreadRun: """Creates a new run for an agent thread. :param thread_id: Required. :type thread_id: str :param body: Required. :type body: IO[bytes] :keyword include: A list of additional fields to include in the response. Currently the only supported value is ``step_details.tool_calls[*].file_search.results[*].content`` to fetch the file search result content. Default value is None. :paramtype include: list[str or ~azure.ai.projects.models.RunAdditionalFieldList] :keyword content_type: Body Parameter content-type. Content type parameter for binary body. Default value is "application/json". :paramtype content_type: str :return: ThreadRun. The ThreadRun is compatible with MutableMapping :rtype: ~azure.ai.projects.models.ThreadRun :raises ~azure.core.exceptions.HttpResponseError: """
[docs] @distributed_trace def create_run( self, thread_id: str, body: Union[JSON, IO[bytes]] = _Unset, *, include: Optional[List[Union[str, _models.RunAdditionalFieldList]]] = None, assistant_id: str = _Unset, model: Optional[str] = None, instructions: Optional[str] = None, additional_instructions: Optional[str] = None, additional_messages: Optional[List[_models.ThreadMessageOptions]] = None, tools: Optional[List[_models.ToolDefinition]] = None, temperature: Optional[float] = None, top_p: Optional[float] = None, max_prompt_tokens: Optional[int] = None, max_completion_tokens: Optional[int] = None, truncation_strategy: Optional[_models.TruncationObject] = None, tool_choice: Optional["_types.AgentsApiToolChoiceOption"] = None, response_format: Optional["_types.AgentsApiResponseFormatOption"] = None, parallel_tool_calls: Optional[bool] = None, metadata: Optional[Dict[str, str]] = None, **kwargs: Any, ) -> _models.ThreadRun: """Creates a new run for an agent thread. :param thread_id: Required. :type thread_id: str :param body: Is either a JSON type or a IO[bytes] type. Required. :type body: JSON or IO[bytes] :keyword include: A list of additional fields to include in the response. Currently the only supported value is ``step_details.tool_calls[*].file_search.results[*].content`` to fetch the file search result content. Default value is None. :paramtype include: list[str or ~azure.ai.projects.models.RunAdditionalFieldList] :keyword assistant_id: The ID of the agent that should run the thread. Required. :paramtype assistant_id: str :keyword model: The overridden model name that the agent should use to run the thread. Default value is None. :paramtype model: str :keyword instructions: The overridden system instructions that the agent should use to run the thread. Default value is None. :paramtype instructions: str :keyword additional_instructions: Additional instructions to append at the end of the instructions for the run. This is useful for modifying the behavior on a per-run basis without overriding other instructions. Default value is None. :paramtype additional_instructions: str :keyword additional_messages: Adds additional messages to the thread before creating the run. Default value is None. :paramtype additional_messages: list[~azure.ai.projects.models.ThreadMessageOptions] :keyword tools: The overridden list of enabled tools that the agent should use to run the thread. Default value is None. :paramtype tools: list[~azure.ai.projects.models.ToolDefinition] :keyword temperature: What sampling temperature to use, between 0 and 2. Higher values like 0.8 will make the output more random, while lower values like 0.2 will make it more focused and deterministic. Default value is None. :paramtype temperature: float :keyword top_p: An alternative to sampling with temperature, called nucleus sampling, where the model considers the results of the tokens with top_p probability mass. So 0.1 means only the tokens comprising the top 10% probability mass are considered. We generally recommend altering this or temperature but not both. Default value is None. :paramtype top_p: float :keyword max_prompt_tokens: The maximum number of prompt tokens that may be used over the course of the run. The run will make a best effort to use only the number of prompt tokens specified, across multiple turns of the run. If the run exceeds the number of prompt tokens specified, the run will end with status ``incomplete``. See ``incomplete_details`` for more info. Default value is None. :paramtype max_prompt_tokens: int :keyword max_completion_tokens: The maximum number of completion tokens that may be used over the course of the run. The run will make a best effort to use only the number of completion tokens specified, across multiple turns of the run. If the run exceeds the number of completion tokens specified, the run will end with status ``incomplete``. See ``incomplete_details`` for more info. Default value is None. :paramtype max_completion_tokens: int :keyword truncation_strategy: The strategy to use for dropping messages as the context windows moves forward. Default value is None. :paramtype truncation_strategy: ~azure.ai.projects.models.TruncationObject :keyword tool_choice: Controls whether or not and which tool is called by the model. Is one of the following types: str, Union[str, "_models.AgentsApiToolChoiceOptionMode"], AgentsNamedToolChoice Default value is None. :paramtype tool_choice: str or str or ~azure.ai.projects.models.AgentsApiToolChoiceOptionMode or ~azure.ai.projects.models.AgentsNamedToolChoice :keyword response_format: Specifies the format that the model must output. Is one of the following types: str, Union[str, "_models.AgentsApiResponseFormatMode"], AgentsApiResponseFormat Default value is None. :paramtype response_format: str or str or ~azure.ai.projects.models.AgentsApiResponseFormatMode or ~azure.ai.projects.models.AgentsApiResponseFormat :keyword parallel_tool_calls: If ``true`` functions will run in parallel during tool use. Default value is None. :paramtype parallel_tool_calls: bool :keyword metadata: A set of up to 16 key/value pairs that can be attached to an object, used for storing additional information about that object in a structured format. Keys may be up to 64 characters in length and values may be up to 512 characters in length. Default value is None. :paramtype metadata: dict[str, str] :return: ThreadRun. The ThreadRun is compatible with MutableMapping :rtype: ~azure.ai.projects.models.ThreadRun :raises ~azure.core.exceptions.HttpResponseError: """ if isinstance(body, dict): # Handle overload with JSON body. content_type = kwargs.get("content_type", "application/json") response = super().create_run(thread_id, body, include=include, content_type=content_type, **kwargs) elif assistant_id is not _Unset: # Handle overload with keyword arguments. response = super().create_run( thread_id, include=include, assistant_id=assistant_id, model=model, instructions=instructions, additional_instructions=additional_instructions, additional_messages=additional_messages, tools=tools, stream_parameter=False, stream=False, temperature=temperature, top_p=top_p, max_prompt_tokens=max_prompt_tokens, max_completion_tokens=max_completion_tokens, truncation_strategy=truncation_strategy, tool_choice=tool_choice, response_format=response_format, parallel_tool_calls=parallel_tool_calls, metadata=metadata, **kwargs, ) elif isinstance(body, io.IOBase): # Handle overload with binary body. content_type = kwargs.get("content_type", "application/json") response = super().create_run(thread_id, body, include=include, content_type=content_type, **kwargs) else: raise ValueError("Invalid combination of arguments provided.") return response
[docs] @distributed_trace def create_and_process_run( self, thread_id: str, *, assistant_id: str, include: Optional[List[Union[str, _models.RunAdditionalFieldList]]] = None, model: Optional[str] = None, instructions: Optional[str] = None, additional_instructions: Optional[str] = None, additional_messages: Optional[List[_models.ThreadMessageOptions]] = None, toolset: Optional[_models.ToolSet] = None, temperature: Optional[float] = None, top_p: Optional[float] = None, max_prompt_tokens: Optional[int] = None, max_completion_tokens: Optional[int] = None, truncation_strategy: Optional[_models.TruncationObject] = None, tool_choice: Optional["_types.AgentsApiToolChoiceOption"] = None, response_format: Optional["_types.AgentsApiResponseFormatOption"] = None, parallel_tool_calls: Optional[bool] = None, metadata: Optional[Dict[str, str]] = None, sleep_interval: int = 1, **kwargs: Any, ) -> _models.ThreadRun: """Creates a new run for an agent thread and processes the run. :param thread_id: Required. :type thread_id: str :keyword assistant_id: The ID of the agent that should run the thread. Required. :paramtype assistant_id: str :keyword include: A list of additional fields to include in the response. Currently the only supported value is ``step_details.tool_calls[*].file_search.results[*].content`` to fetch the file search result content. Default value is None. :paramtype include: list[str or ~azure.ai.projects.models.RunAdditionalFieldList] :keyword model: The overridden model name that the agent should use to run the thread. Default value is None. :paramtype model: str :keyword instructions: The overridden system instructions that the agent should use to run the thread. Default value is None. :paramtype instructions: str :keyword additional_instructions: Additional instructions to append at the end of the instructions for the run. This is useful for modifying the behavior on a per-run basis without overriding other instructions. Default value is None. :paramtype additional_instructions: str :keyword additional_messages: Adds additional messages to the thread before creating the run. Default value is None. :paramtype additional_messages: list[~azure.ai.projects.models.ThreadMessageOptions] :keyword toolset: The Collection of tools and resources (alternative to `tools` and `tool_resources`). Default value is None. :paramtype toolset: ~azure.ai.projects.models.ToolSet :keyword temperature: What sampling temperature to use, between 0 and 2. Higher values like 0.8 will make the output more random, while lower values like 0.2 will make it more focused and deterministic. Default value is None. :paramtype temperature: float :keyword top_p: An alternative to sampling with temperature, called nucleus sampling, where the model considers the results of the tokens with top_p probability mass. So 0.1 means only the tokens comprising the top 10% probability mass are considered. We generally recommend altering this or temperature but not both. Default value is None. :paramtype top_p: float :keyword max_prompt_tokens: The maximum number of prompt tokens that may be used over the course of the run. The run will make a best effort to use only the number of prompt tokens specified, across multiple turns of the run. If the run exceeds the number of prompt tokens specified, the run will end with status ``incomplete``. See ``incomplete_details`` for more info. Default value is None. :paramtype max_prompt_tokens: int :keyword max_completion_tokens: The maximum number of completion tokens that may be used over the course of the run. The run will make a best effort to use only the number of completion tokens specified, across multiple turns of the run. If the run exceeds the number of completion tokens specified, the run will end with status ``incomplete``. See ``incomplete_details`` for more info. Default value is None. :paramtype max_completion_tokens: int :keyword truncation_strategy: The strategy to use for dropping messages as the context windows moves forward. Default value is None. :paramtype truncation_strategy: ~azure.ai.projects.models.TruncationObject :keyword tool_choice: Controls whether or not and which tool is called by the model. Is one of the following types: str, Union[str, "_models.AgentsApiToolChoiceOptionMode"], AgentsNamedToolChoice Default value is None. :paramtype tool_choice: str or str or ~azure.ai.projects.models.AgentsApiToolChoiceOptionMode or ~azure.ai.projects.models.AgentsNamedToolChoice :keyword response_format: Specifies the format that the model must output. Is one of the following types: str, Union[str, "_models.AgentsApiResponseFormatMode"], AgentsApiResponseFormat Default value is None. :paramtype response_format: str or str or ~azure.ai.projects.models.AgentsApiResponseFormatMode or ~azure.ai.projects.models.AgentsApiResponseFormat :keyword parallel_tool_calls: If ``true`` functions will run in parallel during tool use. Default value is None. :paramtype parallel_tool_calls: bool :keyword metadata: A set of up to 16 key/value pairs that can be attached to an object, used for storing additional information about that object in a structured format. Keys may be up to 64 characters in length and values may be up to 512 characters in length. Default value is None. :paramtype metadata: dict[str, str] :keyword sleep_interval: The time in seconds to wait between polling the service for run status. Default value is 1. :paramtype sleep_interval: int :return: AgentRunStream. AgentRunStream is compatible with Iterable and supports streaming. :rtype: ~azure.ai.projects.models.AgentRunStream :raises ~azure.core.exceptions.HttpResponseError: """ # Create and initiate the run with additional parameters run = self.create_run( thread_id=thread_id, include=include, assistant_id=assistant_id, model=model, instructions=instructions, additional_instructions=additional_instructions, additional_messages=additional_messages, tools=toolset.definitions if toolset else None, temperature=temperature, top_p=top_p, max_prompt_tokens=max_prompt_tokens, max_completion_tokens=max_completion_tokens, truncation_strategy=truncation_strategy, tool_choice=tool_choice, response_format=response_format, parallel_tool_calls=parallel_tool_calls, metadata=metadata, **kwargs, ) # Monitor and process the run status while run.status in [ RunStatus.QUEUED, RunStatus.IN_PROGRESS, RunStatus.REQUIRES_ACTION, ]: time.sleep(sleep_interval) run = self.get_run(thread_id=thread_id, run_id=run.id) if run.status == RunStatus.REQUIRES_ACTION and isinstance( run.required_action, _models.SubmitToolOutputsAction ): tool_calls = run.required_action.submit_tool_outputs.tool_calls if not tool_calls: logging.warning("No tool calls provided - cancelling run") self.cancel_run(thread_id=thread_id, run_id=run.id) break # We need tool set only if we are executing local function. In case if # the tool is azure_function we just need to wait when it will be finished. if any(tool_call.type == "function" for tool_call in tool_calls): toolset = toolset or self._toolset.get(run.assistant_id) if toolset is not None: tool_outputs = toolset.execute_tool_calls(tool_calls) else: raise ValueError("Toolset is not available in the client.") logging.info("Tool outputs: %s", tool_outputs) if tool_outputs: self.submit_tool_outputs_to_run(thread_id=thread_id, run_id=run.id, tool_outputs=tool_outputs) logging.info("Current run status: %s", run.status) return run
@overload def create_stream( self, thread_id: str, *, include: Optional[List[Union[str, _models.RunAdditionalFieldList]]] = None, assistant_id: str, content_type: str = "application/json", model: Optional[str] = None, instructions: Optional[str] = None, additional_instructions: Optional[str] = None, additional_messages: Optional[List[_models.ThreadMessageOptions]] = None, tools: Optional[List[_models.ToolDefinition]] = None, temperature: Optional[float] = None, top_p: Optional[float] = None, max_prompt_tokens: Optional[int] = None, max_completion_tokens: Optional[int] = None, truncation_strategy: Optional[_models.TruncationObject] = None, tool_choice: Optional["_types.AgentsApiToolChoiceOption"] = None, response_format: Optional["_types.AgentsApiResponseFormatOption"] = None, parallel_tool_calls: Optional[bool] = None, metadata: Optional[Dict[str, str]] = None, event_handler: None = None, **kwargs: Any, ) -> _models.AgentRunStream[_models.AgentEventHandler]: """Creates a new stream for an agent thread. :param thread_id: Required. :type thread_id: str :keyword include: A list of additional fields to include in the response. Currently the only supported value is ``step_details.tool_calls[*].file_search.results[*].content`` to fetch the file search result content. Default value is None. :paramtype include: list[str or ~azure.ai.projects.models.RunAdditionalFieldList] :keyword assistant_id: The ID of the agent that should run the thread. Required. :paramtype assistant_id: str :keyword content_type: Body Parameter content-type. Content type parameter for JSON body. Default value is "application/json". :paramtype content_type: str :keyword model: The overridden model name that the agent should use to run the thread. Default value is None. :paramtype model: str :keyword instructions: The overridden system instructions that the agent should use to run the thread. Default value is None. :paramtype instructions: str :keyword additional_instructions: Additional instructions to append at the end of the instructions for the run. This is useful for modifying the behavior on a per-run basis without overriding other instructions. Default value is None. :paramtype additional_instructions: str :keyword additional_messages: Adds additional messages to the thread before creating the run. Default value is None. :paramtype additional_messages: list[~azure.ai.projects.models.ThreadMessage] :keyword tools: The overridden list of enabled tools that the agent should use to run the thread. Default value is None. :paramtype tools: list[~azure.ai.projects.models.ToolDefinition] :keyword temperature: What sampling temperature to use, between 0 and 2. Higher values like 0.8 will make the output more random, while lower values like 0.2 will make it more focused and deterministic. Default value is None. :paramtype temperature: float :keyword top_p: An alternative to sampling with temperature, called nucleus sampling, where the model considers the results of the tokens with top_p probability mass. So 0.1 means only the tokens comprising the top 10% probability mass are considered. We generally recommend altering this or temperature but not both. Default value is None. :paramtype top_p: float :keyword max_prompt_tokens: The maximum number of prompt tokens that may be used over the course of the run. The run will make a best effort to use only the number of prompt tokens specified, across multiple turns of the run. If the run exceeds the number of prompt tokens specified, the run will end with status ``incomplete``. See ``incomplete_details`` for more info. Default value is None. :paramtype max_prompt_tokens: int :keyword max_completion_tokens: The maximum number of completion tokens that may be used over the course of the run. The run will make a best effort to use only the number of completion tokens specified, across multiple turns of the run. If the run exceeds the number of completion tokens specified, the run will end with status ``incomplete``. See ``incomplete_details`` for more info. Default value is None. :paramtype max_completion_tokens: int :keyword truncation_strategy: The strategy to use for dropping messages as the context windows moves forward. Default value is None. :paramtype truncation_strategy: ~azure.ai.projects.models.TruncationObject :keyword tool_choice: Controls whether or not and which tool is called by the model. Is one of the following types: str, Union[str, "_models.AgentsApiToolChoiceOptionMode"], AgentsNamedToolChoice Default value is None. :paramtype tool_choice: str or str or ~azure.ai.projects.models.AgentsApiToolChoiceOptionMode or ~azure.ai.projects.models.AgentsNamedToolChoice :keyword response_format: Specifies the format that the model must output. Is one of the following types: str, Union[str, "_models.AgentsApiResponseFormatMode"], AgentsApiResponseFormat Default value is None. :paramtype response_format: str or str or ~azure.ai.projects.models.AgentsApiResponseFormatMode or ~azure.ai.projects.models.AgentsApiResponseFormat :keyword parallel_tool_calls: If ``true`` functions will run in parallel during tool use. Default value is None. :paramtype parallel_tool_calls: bool :keyword metadata: A set of up to 16 key/value pairs that can be attached to an object, used for storing additional information about that object in a structured format. Keys may be up to 64 characters in length and values may be up to 512 characters in length. Default value is None. :paramtype metadata: dict[str, str] :keyword event_handler: None :paramtype event_handler: None. _models.AgentEventHandler will be applied as default. :return: AgentRunStream. AgentRunStream is compatible with Iterable and supports streaming. :rtype: ~azure.ai.projects.models.AgentRunStream :raises ~azure.core.exceptions.HttpResponseError: """ @overload def create_stream( self, thread_id: str, *, assistant_id: str, include: Optional[List[Union[str, _models.RunAdditionalFieldList]]] = None, content_type: str = "application/json", model: Optional[str] = None, instructions: Optional[str] = None, additional_instructions: Optional[str] = None, additional_messages: Optional[List[_models.ThreadMessageOptions]] = None, tools: Optional[List[_models.ToolDefinition]] = None, temperature: Optional[float] = None, top_p: Optional[float] = None, max_prompt_tokens: Optional[int] = None, max_completion_tokens: Optional[int] = None, truncation_strategy: Optional[_models.TruncationObject] = None, tool_choice: Optional["_types.AgentsApiToolChoiceOption"] = None, response_format: Optional["_types.AgentsApiResponseFormatOption"] = None, parallel_tool_calls: Optional[bool] = None, metadata: Optional[Dict[str, str]] = None, event_handler: _models.BaseAgentEventHandlerT, **kwargs: Any, ) -> _models.AgentRunStream[_models.BaseAgentEventHandlerT]: """Creates a new stream for an agent thread. :param thread_id: Required. :type thread_id: str :keyword assistant_id: The ID of the agent that should run the thread. Required. :paramtype assistant_id: str :keyword include: A list of additional fields to include in the response. Currently the only supported value is ``step_details.tool_calls[*].file_search.results[*].content`` to fetch the file search result content. Default value is None. :paramtype include: list[str or ~azure.ai.projects.models.RunAdditionalFieldList] :keyword content_type: Body Parameter content-type. Content type parameter for JSON body. Default value is "application/json". :paramtype content_type: str :keyword model: The overridden model name that the agent should use to run the thread. Default value is None. :paramtype model: str :keyword instructions: The overridden system instructions that the agent should use to run the thread. Default value is None. :paramtype instructions: str :keyword additional_instructions: Additional instructions to append at the end of the instructions for the run. This is useful for modifying the behavior on a per-run basis without overriding other instructions. Default value is None. :paramtype additional_instructions: str :keyword additional_messages: Adds additional messages to the thread before creating the run. Default value is None. :paramtype additional_messages: list[~azure.ai.projects.models.ThreadMessage] :keyword tools: The overridden list of enabled tools that the agent should use to run the thread. Default value is None. :paramtype tools: list[~azure.ai.projects.models.ToolDefinition] :keyword temperature: What sampling temperature to use, between 0 and 2. Higher values like 0.8 will make the output more random, while lower values like 0.2 will make it more focused and deterministic. Default value is None. :paramtype temperature: float :keyword top_p: An alternative to sampling with temperature, called nucleus sampling, where the model considers the results of the tokens with top_p probability mass. So 0.1 means only the tokens comprising the top 10% probability mass are considered. We generally recommend altering this or temperature but not both. Default value is None. :paramtype top_p: float :keyword max_prompt_tokens: The maximum number of prompt tokens that may be used over the course of the run. The run will make a best effort to use only the number of prompt tokens specified, across multiple turns of the run. If the run exceeds the number of prompt tokens specified, the run will end with status ``incomplete``. See ``incomplete_details`` for more info. Default value is None. :paramtype max_prompt_tokens: int :keyword max_completion_tokens: The maximum number of completion tokens that may be used over the course of the run. The run will make a best effort to use only the number of completion tokens specified, across multiple turns of the run. If the run exceeds the number of completion tokens specified, the run will end with status ``incomplete``. See ``incomplete_details`` for more info. Default value is None. :paramtype max_completion_tokens: int :keyword truncation_strategy: The strategy to use for dropping messages as the context windows moves forward. Default value is None. :paramtype truncation_strategy: ~azure.ai.projects.models.TruncationObject :keyword tool_choice: Controls whether or not and which tool is called by the model. Is one of the following types: str, Union[str, "_models.AgentsApiToolChoiceOptionMode"], AgentsNamedToolChoice Default value is None. :paramtype tool_choice: str or str or ~azure.ai.projects.models.AgentsApiToolChoiceOptionMode or ~azure.ai.projects.models.AgentsNamedToolChoice :keyword response_format: Specifies the format that the model must output. Is one of the following types: str, Union[str, "_models.AgentsApiResponseFormatMode"], AgentsApiResponseFormat Default value is None. :paramtype response_format: str or str or ~azure.ai.projects.models.AgentsApiResponseFormatMode or ~azure.ai.projects.models.AgentsApiResponseFormat :keyword parallel_tool_calls: If ``true`` functions will run in parallel during tool use. Default value is None. :paramtype parallel_tool_calls: bool :keyword metadata: A set of up to 16 key/value pairs that can be attached to an object, used for storing additional information about that object in a structured format. Keys may be up to 64 characters in length and values may be up to 512 characters in length. Default value is None. :paramtype metadata: dict[str, str] :keyword event_handler: The event handler to use for processing events during the run. Default value is None. :paramtype event_handler: ~azure.ai.projects.models.AgentEventHandler :return: AgentRunStream. AgentRunStream is compatible with Iterable and supports streaming. :rtype: ~azure.ai.projects.models.AgentRunStream :raises ~azure.core.exceptions.HttpResponseError: """ @overload def create_stream( self, thread_id: str, body: Union[JSON, IO[bytes]], *, include: Optional[List[Union[str, _models.RunAdditionalFieldList]]] = None, event_handler: None = None, content_type: str = "application/json", **kwargs: Any, ) -> _models.AgentRunStream[_models.AgentEventHandler]: """Creates a new run for an agent thread. Terminating when the Run enters a terminal state with a ``data: [DONE]`` message. :param thread_id: Required. :type thread_id: str :param body: Required. :type body: IO[bytes] :keyword include: A list of additional fields to include in the response. Currently the only supported value is ``step_details.tool_calls[*].file_search.results[*].content`` to fetch the file search result content. Default value is None. :paramtype include: list[str or ~azure.ai.projects.models.RunAdditionalFieldList] :keyword event_handler: None :paramtype event_handler: None. _models.AgentEventHandler will be applied as default. :keyword content_type: Body Parameter content-type. Content type parameter for binary body. Default value is "application/json". :paramtype content_type: str :return: AgentRunStream. AgentRunStream is compatible with Iterable and supports streaming. :rtype: ~azure.ai.projects.models.AgentRunStream :raises ~azure.core.exceptions.HttpResponseError: """ @overload def create_stream( self, thread_id: str, body: Union[JSON, IO[bytes]], *, event_handler: _models.BaseAgentEventHandlerT, include: Optional[List[Union[str, _models.RunAdditionalFieldList]]] = None, content_type: str = "application/json", **kwargs: Any, ) -> _models.AgentRunStream[_models.BaseAgentEventHandlerT]: """Creates a new run for an agent thread. Terminating when the Run enters a terminal state with a ``data: [DONE]`` message. :param thread_id: Required. :type thread_id: str :param body: Required. :type body: IO[bytes] :keyword include: A list of additional fields to include in the response. Currently the only supported value is ``step_details.tool_calls[*].file_search.results[*].content`` to fetch the file search result content. Default value is None. :paramtype include: list[str or ~azure.ai.projects.models.RunAdditionalFieldList] :keyword event_handler: The event handler to use for processing events during the run. Default value is None. :paramtype event_handler: ~azure.ai.projects.models.AgentEventHandler :keyword content_type: Body Parameter content-type. Content type parameter for binary body. Default value is "application/json". :paramtype content_type: str :return: AgentRunStream. AgentRunStream is compatible with Iterable and supports streaming. :rtype: ~azure.ai.projects.models.AgentRunStream :raises ~azure.core.exceptions.HttpResponseError: """
[docs] @distributed_trace def create_stream( # pyright: ignore[reportInconsistentOverload] self, thread_id: str, body: Union[JSON, IO[bytes]] = _Unset, *, include: Optional[List[Union[str, _models.RunAdditionalFieldList]]] = None, assistant_id: str = _Unset, model: Optional[str] = None, instructions: Optional[str] = None, additional_instructions: Optional[str] = None, additional_messages: Optional[List[_models.ThreadMessageOptions]] = None, tools: Optional[List[_models.ToolDefinition]] = None, temperature: Optional[float] = None, top_p: Optional[float] = None, max_prompt_tokens: Optional[int] = None, max_completion_tokens: Optional[int] = None, truncation_strategy: Optional[_models.TruncationObject] = None, tool_choice: Optional["_types.AgentsApiToolChoiceOption"] = None, response_format: Optional["_types.AgentsApiResponseFormatOption"] = None, parallel_tool_calls: Optional[bool] = None, metadata: Optional[Dict[str, str]] = None, event_handler: Optional[_models.BaseAgentEventHandlerT] = None, **kwargs: Any, ) -> _models.AgentRunStream[_models.BaseAgentEventHandlerT]: """Creates a new run for an agent thread. Terminating when the Run enters a terminal state with a ``data: [DONE]`` message. :param thread_id: Required. :type thread_id: str :param body: Is either a JSON type or a IO[bytes] type. Required. :type body: JSON or IO[bytes] :keyword include: A list of additional fields to include in the response. Currently the only supported value is ``step_details.tool_calls[*].file_search.results[*].content`` to fetch the file search result content. Default value is None. :paramtype include: list[str or ~azure.ai.projects.models.RunAdditionalFieldList] :keyword assistant_id: The ID of the agent that should run the thread. Required. :paramtype assistant_id: str :keyword model: The overridden model name that the agent should use to run the thread. Default value is None. :paramtype model: str :keyword instructions: The overridden system instructions that the agent should use to run the thread. Default value is None. :paramtype instructions: str :keyword additional_instructions: Additional instructions to append at the end of the instructions for the run. This is useful for modifying the behavior on a per-run basis without overriding other instructions. Default value is None. :paramtype additional_instructions: str :keyword additional_messages: Adds additional messages to the thread before creating the run. Default value is None. :paramtype additional_messages: list[~azure.ai.projects.models.ThreadMessage] :keyword tools: The overridden list of enabled tools that the agent should use to run the thread. Default value is None. :paramtype tools: list[~azure.ai.projects.models.ToolDefinition] :keyword temperature: What sampling temperature to use, between 0 and 2. Higher values like 0.8 will make the output more random, while lower values like 0.2 will make it more focused and deterministic. Default value is None. :paramtype temperature: float :keyword top_p: An alternative to sampling with temperature, called nucleus sampling, where the model considers the results of the tokens with top_p probability mass. So 0.1 means only the tokens comprising the top 10% probability mass are considered. We generally recommend altering this or temperature but not both. Default value is None. :paramtype top_p: float :keyword max_prompt_tokens: The maximum number of prompt tokens that may be used over the course of the run. The run will make a best effort to use only the number of prompt tokens specified, across multiple turns of the run. If the run exceeds the number of prompt tokens specified, the run will end with status ``incomplete``. See ``incomplete_details`` for more info. Default value is None. :paramtype max_prompt_tokens: int :keyword max_completion_tokens: The maximum number of completion tokens that may be used over the course of the run. The run will make a best effort to use only the number of completion tokens specified, across multiple turns of the run. If the run exceeds the number of completion tokens specified, the run will end with status ``incomplete``. See ``incomplete_details`` for more info. Default value is None. :paramtype max_completion_tokens: int :keyword truncation_strategy: The strategy to use for dropping messages as the context windows moves forward. Default value is None. :paramtype truncation_strategy: ~azure.ai.projects.models.TruncationObject :keyword tool_choice: Controls whether or not and which tool is called by the model. Is one of the following types: str, Union[str, "_models.AgentsApiToolChoiceOptionMode"], AgentsNamedToolChoice Default value is None. :paramtype tool_choice: str or str or ~azure.ai.projects.models.AgentsApiToolChoiceOptionMode or ~azure.ai.projects.models.AgentsNamedToolChoice :keyword response_format: Specifies the format that the model must output. Is one of the following types: str, Union[str, "_models.AgentsApiResponseFormatMode"], AgentsApiResponseFormat Default value is None. :paramtype response_format: str or str or ~azure.ai.projects.models.AgentsApiResponseFormatMode or ~azure.ai.projects.models.AgentsApiResponseFormat :keyword parallel_tool_calls: If ``true`` functions will run in parallel during tool use. Default value is None. :paramtype parallel_tool_calls: bool :keyword metadata: A set of up to 16 key/value pairs that can be attached to an object, used for storing additional information about that object in a structured format. Keys may be up to 64 characters in length and values may be up to 512 characters in length. Default value is None. :paramtype metadata: dict[str, str] :keyword event_handler: The event handler to use for processing events during the run. Default value is None. :paramtype event_handler: ~azure.ai.projects.models.AgentEventHandler :return: AgentRunStream. AgentRunStream is compatible with Iterable and supports streaming. :rtype: ~azure.ai.projects.models.AgentRunStream :raises ~azure.core.exceptions.HttpResponseError: """ if isinstance(body, dict): # Handle overload with JSON body. content_type = kwargs.get("content_type", "application/json") response = super().create_run(thread_id, body, include=include, content_type=content_type, **kwargs) elif assistant_id is not _Unset: # Handle overload with keyword arguments. response = super().create_run( thread_id, include=include, assistant_id=assistant_id, model=model, instructions=instructions, additional_instructions=additional_instructions, additional_messages=additional_messages, tools=tools, stream_parameter=True, stream=True, temperature=temperature, top_p=top_p, max_prompt_tokens=max_prompt_tokens, max_completion_tokens=max_completion_tokens, truncation_strategy=truncation_strategy, tool_choice=tool_choice, response_format=response_format, parallel_tool_calls=parallel_tool_calls, metadata=metadata, **kwargs, ) elif isinstance(body, io.IOBase): # Handle overload with binary body. content_type = kwargs.get("content_type", "application/json") response = super().create_run(thread_id, body, include=include, content_type=content_type, **kwargs) else: raise ValueError("Invalid combination of arguments provided.") response_iterator: Iterator[bytes] = cast(Iterator[bytes], response) if not event_handler: event_handler = cast(_models.BaseAgentEventHandlerT, _models.AgentEventHandler()) return _models.AgentRunStream(response_iterator, self._handle_submit_tool_outputs, event_handler)
# pylint: disable=arguments-differ @overload def submit_tool_outputs_to_run( # pylint: disable=arguments-differ self, thread_id: str, run_id: str, *, tool_outputs: List[_models.ToolOutput], content_type: str = "application/json", event_handler: Optional[_models.AgentEventHandler] = None, **kwargs: Any, ) -> _models.ThreadRun: """Submits outputs from tools as requested by tool calls in a run. Runs that need submitted tool outputs will have a status of 'requires_action' with a required_action.type of 'submit_tool_outputs'. :param thread_id: Required. :type thread_id: str :param run_id: Required. :type run_id: str :keyword tool_outputs: Required. :paramtype tool_outputs: list[~azure.ai.projects.models.ToolOutput] :keyword content_type: Body Parameter content-type. Content type parameter for JSON body. Default value is "application/json". :paramtype content_type: str :keyword event_handler: The event handler to use for processing events during the run. Default value is None. :paramtype event_handler: ~azure.ai.projects.models.AgentEventHandler :return: ThreadRun. The ThreadRun is compatible with MutableMapping :rtype: ~azure.ai.projects.models.ThreadRun :raises ~azure.core.exceptions.HttpResponseError: """ @overload def submit_tool_outputs_to_run( self, thread_id: str, run_id: str, body: JSON, *, content_type: str = "application/json", **kwargs: Any ) -> _models.ThreadRun: """Submits outputs from tools as requested by tool calls in a run. Runs that need submitted tool outputs will have a status of 'requires_action' with a required_action.type of 'submit_tool_outputs'. :param thread_id: Required. :type thread_id: str :param run_id: Required. :type run_id: str :param body: Required. :type body: JSON :keyword content_type: Body Parameter content-type. Content type parameter for JSON body. Default value is "application/json". :paramtype content_type: str :return: ThreadRun. The ThreadRun is compatible with MutableMapping :rtype: ~azure.ai.projects.models.ThreadRun :raises ~azure.core.exceptions.HttpResponseError: """ @overload def submit_tool_outputs_to_run( self, thread_id: str, run_id: str, body: IO[bytes], *, content_type: str = "application/json", **kwargs: Any ) -> _models.ThreadRun: """Submits outputs from tools as requested by tool calls in a run. Runs that need submitted tool outputs will have a status of 'requires_action' with a required_action.type of 'submit_tool_outputs'. :param thread_id: Required. :type thread_id: str :param run_id: Required. :type run_id: str :param body: Required. :type body: IO[bytes] :keyword content_type: Body Parameter content-type. Content type parameter for binary body. Default value is "application/json". :paramtype content_type: str :return: ThreadRun. The ThreadRun is compatible with MutableMapping :rtype: ~azure.ai.projects.models.ThreadRun :raises ~azure.core.exceptions.HttpResponseError: """
[docs] @distributed_trace def submit_tool_outputs_to_run( self, thread_id: str, run_id: str, body: Union[JSON, IO[bytes]] = _Unset, *, tool_outputs: List[_models.ToolOutput] = _Unset, **kwargs: Any, ) -> _models.ThreadRun: """Submits outputs from tools as requested by tool calls in a run. Runs that need submitted tool outputs will have a status of 'requires_action' with a required_action.type of 'submit_tool_outputs'. :param thread_id: Required. :type thread_id: str :param run_id: Required. :type run_id: str :param body: Is either a JSON type or a IO[bytes] type. Required. :type body: JSON or IO[bytes] :keyword tool_outputs: Required. :paramtype tool_outputs: list[~azure.ai.projects.models.ToolOutput] :return: ThreadRun. The ThreadRun is compatible with MutableMapping :rtype: ~azure.ai.projects.models.ThreadRun :raises ~azure.core.exceptions.HttpResponseError: """ if isinstance(body, dict): content_type = kwargs.get("content_type", "application/json") response = super().submit_tool_outputs_to_run(thread_id, run_id, body, content_type=content_type, **kwargs) elif tool_outputs is not _Unset: response = super().submit_tool_outputs_to_run( thread_id, run_id, tool_outputs=tool_outputs, stream_parameter=False, stream=False, **kwargs, ) elif isinstance(body, io.IOBase): content_type = kwargs.get("content_type", "application/json") response = super().submit_tool_outputs_to_run(thread_id, run_id, body, content_type=content_type, **kwargs) else: raise ValueError("Invalid combination of arguments provided.") return response
@overload def submit_tool_outputs_to_stream( self, thread_id: str, run_id: str, body: Union[JSON, IO[bytes]], *, event_handler: _models.BaseAgentEventHandler, content_type: str = "application/json", **kwargs: Any, ) -> None: """Submits outputs from tools as requested by tool calls in a stream. Runs that need submitted tool outputs will have a status of 'requires_action' with a required_action.type of 'submit_tool_outputs'. terminating when the Run enters a terminal state with a ``data: [DONE]`` message. :param thread_id: Required. :type thread_id: str :param run_id: Required. :type run_id: str :param body: Is either a JSON type or a IO[bytes] type. Required. :type body: JSON or IO[bytes] :keyword event_handler: The event handler to use for processing events during the run. :paramtype event_handler: ~azure.ai.projects.models.BaseAgentEventHandler :keyword content_type: Body Parameter content-type. Content type parameter for JSON body. Default value is "application/json". :paramtype content_type: str :raises ~azure.core.exceptions.HttpResponseError: """ @overload def submit_tool_outputs_to_stream( self, thread_id: str, run_id: str, *, tool_outputs: List[_models.ToolOutput], content_type: str = "application/json", event_handler: _models.BaseAgentEventHandler, **kwargs: Any, ) -> None: """Submits outputs from tools as requested by tool calls in a stream. Runs that need submitted tool outputs will have a status of 'requires_action' with a required_action.type of 'submit_tool_outputs'. terminating when the Run enters a terminal state with a ``data: [DONE]`` message. :param thread_id: Required. :type thread_id: str :param run_id: Required. :type run_id: str :keyword tool_outputs: Required. :paramtype tool_outputs: list[~azure.ai.projects.models.ToolOutput] :keyword content_type: Body Parameter content-type. Content type parameter for JSON body. Default value is "application/json". :paramtype content_type: str :keyword event_handler: The event handler to use for processing events during the run. :paramtype event_handler: ~azure.ai.projects.models.BaseAgentEventHandler :raises ~azure.core.exceptions.HttpResponseError: """
[docs] @distributed_trace def submit_tool_outputs_to_stream( # pyright: ignore[reportInconsistentOverload] self, thread_id: str, run_id: str, body: Union[JSON, IO[bytes]] = _Unset, *, tool_outputs: List[_models.ToolOutput] = _Unset, event_handler: _models.BaseAgentEventHandler, **kwargs: Any, ) -> None: """Submits outputs from tools as requested by tool calls in a stream. Runs that need submitted tool outputs will have a status of 'requires_action' with a required_action.type of 'submit_tool_outputs'. terminating when the Run enters a terminal state with a ``data: [DONE]`` message. :param thread_id: Required. :type thread_id: str :param run_id: Required. :type run_id: str :param body: Is either a JSON type or a IO[bytes] type. Required. :type body: JSON or IO[bytes] :keyword tool_outputs: Required. :paramtype tool_outputs: list[~azure.ai.projects.models.ToolOutput] :keyword event_handler: The event handler to use for processing events during the run. :paramtype event_handler: ~azure.ai.projects.models.BaseAgentEventHandler :raises ~azure.core.exceptions.HttpResponseError: """ if isinstance(body, dict): content_type = kwargs.get("content_type", "application/json") response = super().submit_tool_outputs_to_run(thread_id, run_id, body, content_type=content_type, **kwargs) elif tool_outputs is not _Unset: response = super().submit_tool_outputs_to_run( thread_id, run_id, tool_outputs=tool_outputs, stream_parameter=True, stream=True, **kwargs ) elif isinstance(body, io.IOBase): content_type = kwargs.get("content_type", "application/json") response = super().submit_tool_outputs_to_run(thread_id, run_id, body, content_type=content_type, **kwargs) else: raise ValueError("Invalid combination of arguments provided.") # Cast the response to Iterator[bytes] for type correctness response_iterator: Iterator[bytes] = cast(Iterator[bytes], response) event_handler.initialize(response_iterator, self._handle_submit_tool_outputs)
def _handle_submit_tool_outputs(self, run: _models.ThreadRun, event_handler: _models.BaseAgentEventHandler) -> None: if isinstance(run.required_action, _models.SubmitToolOutputsAction): tool_calls = run.required_action.submit_tool_outputs.tool_calls if not tool_calls: logger.debug("No tool calls to execute.") return # We need tool set only if we are executing local function. In case if # the tool is azure_function we just need to wait when it will be finished. if any(tool_call.type == "function" for tool_call in tool_calls): toolset = self._toolset.get(run.assistant_id) if toolset: tool_outputs = toolset.execute_tool_calls(tool_calls) else: logger.debug("Toolset is not available in the client.") return logger.info("Tool outputs: %s", tool_outputs) if tool_outputs: self.submit_tool_outputs_to_stream( thread_id=run.thread_id, run_id=run.id, tool_outputs=tool_outputs, event_handler=event_handler, ) # pylint: disable=arguments-differ @overload def upload_file( # pylint: disable=arguments-differ self, *, file_path: str, purpose: Union[str, _models.FilePurpose], **kwargs: Any ) -> _models.OpenAIFile: """Uploads a file for use by other operations. :keyword file_path: Required. :type file_path: str :keyword purpose: Known values are: "fine-tune", "fine-tune-results", "assistants", "assistants_output", "batch", "batch_output", and "vision". Required. :paramtype purpose: str or ~azure.ai.projects.models.FilePurpose :return: OpenAIFile. The OpenAIFile is compatible with MutableMapping :rtype: ~azure.ai.projects.models.OpenAIFile :raises ~azure.core.exceptions.HttpResponseError: """ # pylint: disable=arguments-differ @overload def upload_file( # pylint: disable=arguments-differ self, *, file: FileType, purpose: Union[str, _models.FilePurpose], filename: Optional[str] = None, **kwargs: Any ) -> _models.OpenAIFile: """Uploads a file for use by other operations. :keyword file: Required. :paramtype file: ~azure.ai.projects._vendor.FileType :keyword purpose: Known values are: "fine-tune", "fine-tune-results", "assistants", "assistants_output", "batch", "batch_output", and "vision". Required. :paramtype purpose: str or ~azure.ai.projects.models.FilePurpose :keyword filename: Default value is None. :paramtype filename: str :return: OpenAIFile. The OpenAIFile is compatible with MutableMapping :rtype: ~azure.ai.projects.models.OpenAIFile :raises ~azure.core.exceptions.HttpResponseError: """ @overload def upload_file(self, body: JSON, **kwargs: Any) -> _models.OpenAIFile: """Uploads a file for use by other operations. :param body: Required. :type body: JSON :return: OpenAIFile. The OpenAIFile is compatible with MutableMapping :rtype: ~azure.ai.projects.models.OpenAIFile :raises ~azure.core.exceptions.HttpResponseError: """
[docs] @distributed_trace def upload_file( self, body: Optional[JSON] = None, *, file: Optional[FileType] = None, file_path: Optional[str] = None, purpose: Union[str, _models.FilePurpose, None] = None, filename: Optional[str] = None, **kwargs: Any, ) -> _models.OpenAIFile: """ Uploads a file for use by other operations, delegating to the generated operations. :param body: JSON. Required if `file` and `purpose` are not provided. :type body: Optional[JSON] :keyword file: File content. Required if `body` and `purpose` are not provided. :paramtype file: Optional[FileType] :keyword file_path: Path to the file. Required if `body` and `purpose` are not provided. :paramtype file_path: Optional[str] :keyword purpose: Known values are: "fine-tune", "fine-tune-results", "assistants", :paramtype purpose: Union[str, _models.FilePurpose, None] "assistants_output", "batch", "batch_output", and "vision". Required if `body` and `file` are not provided. :keyword filename: The name of the file. :paramtype filename: Optional[str] :return: OpenAIFile. The OpenAIFile is compatible with MutableMapping :rtype: _models.OpenAIFile :raises FileNotFoundError: If the file_path is invalid. :raises IOError: If there are issues with reading the file. :raises: HttpResponseError for HTTP errors. """ if body is not None: return super().upload_file(body=body, **kwargs) if isinstance(purpose, FilePurpose): purpose = purpose.value if file is not None and purpose is not None: return super().upload_file(file=file, purpose=purpose, filename=filename, **kwargs) if file_path is not None and purpose is not None: if not os.path.isfile(file_path): raise FileNotFoundError(f"The file path provided does not exist: {file_path}") try: with open(file_path, "rb") as f: content = f.read() # Determine filename and create correct FileType base_filename = filename or os.path.basename(file_path) file_content: FileType = (base_filename, content) return super().upload_file(file=file_content, purpose=purpose, **kwargs) except IOError as e: raise IOError(f"Unable to read file: {file_path}") from e raise ValueError("Invalid parameters for upload_file. Please provide the necessary arguments.")
@overload def upload_file_and_poll(self, body: JSON, *, sleep_interval: float = 1, **kwargs: Any) -> _models.OpenAIFile: """Uploads a file for use by other operations. :param body: Required. :type body: JSON :keyword sleep_interval: Time to wait before polling for the status of the uploaded file. Default value is 1. :paramtype sleep_interval: float :return: OpenAIFile. The OpenAIFile is compatible with MutableMapping :rtype: ~azure.ai.projects.models.OpenAIFile :raises ~azure.core.exceptions.HttpResponseError: """ @overload def upload_file_and_poll( self, *, file: FileType, purpose: Union[str, _models.FilePurpose], filename: Optional[str] = None, sleep_interval: float = 1, **kwargs: Any, ) -> _models.OpenAIFile: """Uploads a file for use by other operations. :keyword file: Required. :paramtype file: ~azure.ai.projects._vendor.FileType :keyword purpose: Known values are: "fine-tune", "fine-tune-results", "assistants", "assistants_output", "batch", "batch_output", and "vision". Required. :paramtype purpose: str or ~azure.ai.projects.models.FilePurpose :keyword filename: Default value is None. :paramtype filename: str :keyword sleep_interval: Time to wait before polling for the status of the uploaded file. Default value is 1. :paramtype sleep_interval: float :return: OpenAIFile. The OpenAIFile is compatible with MutableMapping :rtype: ~azure.ai.projects.models.OpenAIFile :raises ~azure.core.exceptions.HttpResponseError: """ @overload def upload_file_and_poll( self, *, file_path: str, purpose: Union[str, _models.FilePurpose], sleep_interval: float = 1, **kwargs: Any ) -> _models.OpenAIFile: """Uploads a file for use by other operations. :keyword file_path: Required. :type file_path: str :keyword purpose: Known values are: "fine-tune", "fine-tune-results", "assistants", "assistants_output", "batch", "batch_output", and "vision". Required. :paramtype purpose: str or ~azure.ai.projects.models.FilePurpose :keyword sleep_interval: Time to wait before polling for the status of the uploaded file. Default value is 1. :paramtype sleep_interval: float :return: OpenAIFile. The OpenAIFile is compatible with MutableMapping :rtype: ~azure.ai.projects.models.OpenAIFile :raises ~azure.core.exceptions.HttpResponseError: """
[docs] @distributed_trace def upload_file_and_poll( self, body: Optional[JSON] = None, *, file: Optional[FileType] = None, file_path: Optional[str] = None, purpose: Union[str, _models.FilePurpose, None] = None, filename: Optional[str] = None, sleep_interval: float = 1, **kwargs: Any, ) -> _models.OpenAIFile: """ Uploads a file for use by other operations, delegating to the generated operations. :param body: JSON. Required if `file` and `purpose` are not provided. :type body: Optional[JSON] :keyword file: File content. Required if `body` and `purpose` are not provided. :paramtype file: Optional[FileType] :keyword file_path: Path to the file. Required if `body` and `purpose` are not provided. :paramtype file_path: Optional[str] :keyword purpose: Known values are: "fine-tune", "fine-tune-results", "assistants", "assistants_output", "batch", "batch_output", and "vision". Required if `body` and `file` are not provided. :paramtype purpose: Union[str, _models.FilePurpose, None] :keyword filename: The name of the file. :paramtype filename: Optional[str] :keyword sleep_interval: Time to wait before polling for the status of the uploaded file. Default value is 1. :paramtype sleep_interval: float :return: OpenAIFile. The OpenAIFile is compatible with MutableMapping :rtype: _models.OpenAIFile :raises FileNotFoundError: If the file_path is invalid. :raises IOError: If there are issues with reading the file. :raises: HttpResponseError for HTTP errors. """ if body is not None: uploaded_file = self.upload_file(body=body, **kwargs) elif file is not None and purpose is not None: uploaded_file = self.upload_file(file=file, purpose=purpose, filename=filename, **kwargs) elif file_path is not None and purpose is not None: uploaded_file = self.upload_file(file_path=file_path, purpose=purpose, **kwargs) else: raise ValueError( "Invalid parameters for upload_file_and_poll. Please provide either 'body', " "or both 'file' and 'purpose', or both 'file_path' and 'purpose'." ) while uploaded_file.status in ["uploaded", "pending", "running"]: time.sleep(sleep_interval) uploaded_file = self.get_file(uploaded_file.id) return uploaded_file
@overload def create_vector_store_and_poll( self, body: JSON, *, content_type: str = "application/json", sleep_interval: float = 1, **kwargs: Any ) -> _models.VectorStore: """Creates a vector store and poll. :param body: Required. :type body: JSON :keyword content_type: Body Parameter content-type. Content type parameter for JSON body. Default value is "application/json". :paramtype content_type: str :keyword sleep_interval: Time to wait before polling for the status of the vector store. Default value is 1. :paramtype sleep_interval: float :return: VectorStore. The VectorStore is compatible with MutableMapping :rtype: ~azure.ai.projects.models.VectorStore :raises ~azure.core.exceptions.HttpResponseError: """ @overload def create_vector_store_and_poll( self, *, content_type: str = "application/json", file_ids: Optional[List[str]] = None, name: Optional[str] = None, data_sources: Optional[List[_models.VectorStoreDataSource]] = None, expires_after: Optional[_models.VectorStoreExpirationPolicy] = None, chunking_strategy: Optional[_models.VectorStoreChunkingStrategyRequest] = None, metadata: Optional[Dict[str, str]] = None, sleep_interval: float = 1, **kwargs: Any, ) -> _models.VectorStore: """Creates a vector store and poll. :keyword content_type: Body Parameter content-type. Content type parameter for JSON body. Default value is "application/json". :paramtype content_type: str :keyword file_ids: A list of file IDs that the vector store should use. Useful for tools like ``file_search`` that can access files. Default value is None. :paramtype file_ids: list[str] :keyword name: The name of the vector store. Default value is None. :paramtype name: str :keyword data_sources: List of Azure assets. Default value is None. :paramtype data_sources: list[~azure.ai.projects.models.VectorStoreDataSource] :keyword expires_after: Details on when this vector store expires. Default value is None. :paramtype expires_after: ~azure.ai.projects.models.VectorStoreExpirationPolicy :keyword chunking_strategy: The chunking strategy used to chunk the file(s). If not set, will use the auto strategy. Only applicable if file_ids is non-empty. Default value is None. :paramtype chunking_strategy: ~azure.ai.projects.models.VectorStoreChunkingStrategyRequest :keyword metadata: A set of up to 16 key/value pairs that can be attached to an object, used for storing additional information about that object in a structured format. Keys may be up to 64 characters in length and values may be up to 512 characters in length. Default value is None. :paramtype metadata: dict[str, str] :keyword sleep_interval: Time to wait before polling for the status of the vector store. Default value is 1. :paramtype sleep_interval: float :return: VectorStore. The VectorStore is compatible with MutableMapping :rtype: ~azure.ai.projects.models.VectorStore :raises ~azure.core.exceptions.HttpResponseError: """ @overload def create_vector_store_and_poll( self, body: IO[bytes], *, content_type: str = "application/json", sleep_interval: float = 1, **kwargs: Any ) -> _models.VectorStore: """Creates a vector store and poll. :param body: Required. :type body: IO[bytes] :keyword content_type: Body Parameter content-type. Content type parameter for binary body. Default value is "application/json". :paramtype content_type: str :keyword sleep_interval: Time to wait before polling for the status of the vector store. Default value is 1. :paramtype sleep_interval: float :return: VectorStore. The VectorStore is compatible with MutableMapping :rtype: ~azure.ai.projects.models.VectorStore :raises ~azure.core.exceptions.HttpResponseError: """
[docs] @distributed_trace def create_vector_store_and_poll( self, body: Union[JSON, IO[bytes]] = _Unset, *, content_type: str = "application/json", file_ids: Optional[List[str]] = None, name: Optional[str] = None, data_sources: Optional[List[_models.VectorStoreDataSource]] = None, expires_after: Optional[_models.VectorStoreExpirationPolicy] = None, chunking_strategy: Optional[_models.VectorStoreChunkingStrategyRequest] = None, metadata: Optional[Dict[str, str]] = None, sleep_interval: float = 1, **kwargs: Any, ) -> _models.VectorStore: """Creates a vector store and poll. :param body: Is either a JSON type or a IO[bytes] type. Required. :type body: JSON or IO[bytes] :keyword content_type: Body Parameter content-type. Content type parameter for binary body. Default value is "application/json". :paramtype content_type: str :keyword file_ids: A list of file IDs that the vector store should use. Useful for tools like ``file_search`` that can access files. Default value is None. :paramtype file_ids: list[str] :keyword name: The name of the vector store. Default value is None. :paramtype name: str :keyword data_sources: List of Azure assets. Default value is None. :paramtype data_sources: list[~azure.ai.projects.models.VectorStoreDataSource] :keyword expires_after: Details on when this vector store expires. Default value is None. :paramtype expires_after: ~azure.ai.projects.models.VectorStoreExpirationPolicy :keyword chunking_strategy: The chunking strategy used to chunk the file(s). If not set, will use the auto strategy. Only applicable if file_ids is non-empty. Default value is None. :paramtype chunking_strategy: ~azure.ai.projects.models.VectorStoreChunkingStrategyRequest :keyword metadata: A set of up to 16 key/value pairs that can be attached to an object, used for storing additional information about that object in a structured format. Keys may be up to 64 characters in length and values may be up to 512 characters in length. Default value is None. :paramtype metadata: dict[str, str] :keyword sleep_interval: Time to wait before polling for the status of the vector store. Default value is 1. :paramtype sleep_interval: float :return: VectorStore. The VectorStore is compatible with MutableMapping :rtype: ~azure.ai.projects.models.VectorStore :raises ~azure.core.exceptions.HttpResponseError: """ if body is not _Unset: if isinstance(body, dict): vector_store = super().create_vector_store( body=body, content_type=content_type or "application/json", **kwargs ) elif isinstance(body, io.IOBase): vector_store = super().create_vector_store(body=body, content_type=content_type, **kwargs) else: raise ValueError("Invalid 'body' type: must be a dictionary (JSON) or a file-like object (IO[bytes]).") else: store_configuration = None if data_sources: store_configuration = _models.VectorStoreConfiguration(data_sources=data_sources) vector_store = super().create_vector_store( file_ids=file_ids, store_configuration=store_configuration, name=name, expires_after=expires_after, chunking_strategy=chunking_strategy, metadata=metadata, **kwargs, ) while vector_store.status == "in_progress": time.sleep(sleep_interval) vector_store = super().get_vector_store(vector_store.id) return vector_store
@overload def create_vector_store_file_batch_and_poll( self, vector_store_id: str, body: JSON, *, content_type: str = "application/json", sleep_interval: float = 1, **kwargs: Any, ) -> _models.VectorStoreFileBatch: """Create a vector store file batch and poll. :param vector_store_id: Identifier of the vector store. Required. :type vector_store_id: str :param body: Required. :type body: JSON :keyword content_type: Body Parameter content-type. Content type parameter for JSON body. Default value is "application/json". :paramtype content_type: str :keyword sleep_interval: Time to wait before polling for the status of the vector store. Default value is 1. :paramtype sleep_interval: float :return: VectorStoreFileBatch. The VectorStoreFileBatch is compatible with MutableMapping :rtype: ~azure.ai.projects.models.VectorStoreFileBatch :raises ~azure.core.exceptions.HttpResponseError: """ @overload def create_vector_store_file_batch_and_poll( self, vector_store_id: str, *, file_ids: Optional[List[str]] = None, data_sources: Optional[List[_models.VectorStoreDataSource]] = None, content_type: str = "application/json", chunking_strategy: Optional[_models.VectorStoreChunkingStrategyRequest] = None, sleep_interval: float = 1, **kwargs: Any, ) -> _models.VectorStoreFileBatch: """Create a vector store file batch and poll. :param vector_store_id: Identifier of the vector store. Required. :type vector_store_id: str :keyword file_ids: List of file identifiers. Required. :paramtype file_ids: list[str] :keyword data_sources: List of Azure assets. Default value is None. :paramtype data_sources: list[~azure.ai.projects.models.VectorStoreDataSource] :keyword content_type: Body Parameter content-type. Content type parameter for JSON body. Default value is "application/json". :paramtype content_type: str :keyword chunking_strategy: The chunking strategy used to chunk the file(s). If not set, will use the auto strategy. Default value is None. :paramtype chunking_strategy: ~azure.ai.projects.models.VectorStoreChunkingStrategyRequest :keyword sleep_interval: Time to wait before polling for the status of the vector store. Default value is 1. :paramtype sleep_interval: float :return: VectorStoreFileBatch. The VectorStoreFileBatch is compatible with MutableMapping :rtype: ~azure.ai.projects.models.VectorStoreFileBatch :raises ~azure.core.exceptions.HttpResponseError: """ @overload def create_vector_store_file_batch_and_poll( self, vector_store_id: str, body: IO[bytes], *, content_type: str = "application/json", sleep_interval: float = 1, **kwargs: Any, ) -> _models.VectorStoreFileBatch: """Create a vector store file batch and poll. :param vector_store_id: Identifier of the vector store. Required. :type vector_store_id: str :param body: Required. :type body: IO[bytes] :keyword content_type: Body Parameter content-type. Content type parameter for binary body. Default value is "application/json". :paramtype content_type: str :keyword sleep_interval: Time to wait before polling for the status of the vector store. Default value is 1. :paramtype sleep_interval: float :return: VectorStoreFileBatch. The VectorStoreFileBatch is compatible with MutableMapping :rtype: ~azure.ai.projects.models.VectorStoreFileBatch :raises ~azure.core.exceptions.HttpResponseError: """
[docs] @distributed_trace def create_vector_store_file_batch_and_poll( self, vector_store_id: str, body: Union[JSON, IO[bytes]] = _Unset, *, file_ids: Optional[List[str]] = None, data_sources: Optional[List[_models.VectorStoreDataSource]] = None, chunking_strategy: Optional[_models.VectorStoreChunkingStrategyRequest] = None, content_type: str = "application/json", sleep_interval: float = 1, **kwargs: Any, ) -> _models.VectorStoreFileBatch: """Create a vector store file batch and poll. :param vector_store_id: Identifier of the vector store. Required. :type vector_store_id: str :param body: Is either a JSON type or a IO[bytes] type. Required. :type body: JSON or IO[bytes] :keyword file_ids: List of file identifiers. Required. :paramtype file_ids: list[str] :keyword data_sources: List of Azure assets. Default value is None. :paramtype data_sources: list[~azure.ai.client.models.VectorStoreDataSource] :keyword chunking_strategy: The chunking strategy used to chunk the file(s). If not set, will use the auto strategy. Default value is None. :paramtype chunking_strategy: ~azure.ai.projects.models.VectorStoreChunkingStrategyRequest :keyword content_type: Body parameter content-type. Defaults to "application/json". :paramtype content_type: str :keyword sleep_interval: Time to wait before polling for the status of the vector store. Default value is 1. :paramtype sleep_interval: float :return: VectorStoreFileBatch. The VectorStoreFileBatch is compatible with MutableMapping :rtype: ~azure.ai.projects.models.VectorStoreFileBatch :raises ~azure.core.exceptions.HttpResponseError: """ if body is not _Unset: if isinstance(body, dict): vector_store_file_batch = super().create_vector_store_file_batch( vector_store_id=vector_store_id, body=body, content_type=content_type or "application/json", **kwargs, ) elif isinstance(body, io.IOBase): vector_store_file_batch = super().create_vector_store_file_batch( vector_store_id=vector_store_id, body=body, content_type=content_type, **kwargs, ) else: raise ValueError("Invalid type for 'body'. Must be a dict (JSON) or file-like (IO[bytes]).") else: vector_store_file_batch = super().create_vector_store_file_batch( vector_store_id=vector_store_id, file_ids=file_ids, data_sources=data_sources, chunking_strategy=chunking_strategy, **kwargs, ) while vector_store_file_batch.status == "in_progress": time.sleep(sleep_interval) vector_store_file_batch = super().get_vector_store_file_batch( vector_store_id=vector_store_id, batch_id=vector_store_file_batch.id ) return vector_store_file_batch
[docs] @distributed_trace def get_file_content(self, file_id: str, **kwargs: Any) -> Iterator[bytes]: """ Returns file content as byte stream for given file_id. :param file_id: The ID of the file to retrieve. Required. :type file_id: str :return: An iterator that yields bytes from the file content. :rtype: Iterator[bytes] :raises ~azure.core.exceptions.HttpResponseError: If the HTTP request fails. """ kwargs["stream"] = True response = super()._get_file_content(file_id, **kwargs) return cast(Iterator[bytes], response)
[docs] @distributed_trace def save_file(self, file_id: str, file_name: str, target_dir: Optional[Union[str, Path]] = None) -> None: """ Synchronously saves file content retrieved using a file identifier to the specified local directory. :param file_id: The unique identifier for the file to retrieve. :type file_id: str :param file_name: The name of the file to be saved. :type file_name: str :param target_dir: The directory where the file should be saved. Defaults to the current working directory. :type target_dir: Optional[Union[str, Path]] :raises ValueError: If the target path is not a directory or the file name is invalid. :raises RuntimeError: If file content retrieval fails or no content is found. :raises TypeError: If retrieved chunks are not bytes-like objects. :raises IOError: If writing to the file fails. """ try: # Determine and validate the target directory path = Path(target_dir).expanduser().resolve() if target_dir else Path.cwd() path.mkdir(parents=True, exist_ok=True) if not path.is_dir(): raise ValueError(f"The target path '{path}' is not a directory.") # Sanitize and validate the file name sanitized_file_name = Path(file_name).name if not sanitized_file_name: raise ValueError("The provided file name is invalid.") # Retrieve the file content file_content_stream = self.get_file_content(file_id) if not file_content_stream: raise RuntimeError(f"No content retrievable for file ID '{file_id}'.") target_file_path = path / sanitized_file_name # Write the file content to disk with target_file_path.open("wb") as file: for chunk in file_content_stream: if isinstance(chunk, (bytes, bytearray)): file.write(chunk) else: raise TypeError(f"Expected bytes or bytearray, got {type(chunk).__name__}") logger.debug("File '%s' saved successfully at '%s'.", sanitized_file_name, target_file_path) except (ValueError, RuntimeError, TypeError, IOError) as e: logger.error("An error occurred in save_file: %s", e) raise
@overload def create_vector_store_file_and_poll( self, vector_store_id: str, body: JSON, *, content_type: str = "application/json", sleep_interval: float = 1, **kwargs: Any, ) -> _models.VectorStoreFile: """Create a vector store file by attaching a file to a vector store. :param vector_store_id: Identifier of the vector store. Required. :type vector_store_id: str :param body: Required. :type body: JSON :keyword content_type: Body Parameter content-type. Content type parameter for JSON body. Default value is "application/json". :paramtype content_type: str :keyword sleep_interval: Time to wait before polling for the status of the vector store. Default value is 1. :paramtype sleep_interval: float :return: VectorStoreFile. The VectorStoreFile is compatible with MutableMapping :rtype: ~azure.ai.projects.models.VectorStoreFile :raises ~azure.core.exceptions.HttpResponseError: """ @overload def create_vector_store_file_and_poll( self, vector_store_id: str, *, content_type: str = "application/json", file_id: Optional[str] = None, data_source: Optional[_models.VectorStoreDataSource] = None, chunking_strategy: Optional[_models.VectorStoreChunkingStrategyRequest] = None, sleep_interval: float = 1, **kwargs: Any, ) -> _models.VectorStoreFile: """Create a vector store file by attaching a file to a vector store. :param vector_store_id: Identifier of the vector store. Required. :type vector_store_id: str :keyword content_type: Body Parameter content-type. Content type parameter for JSON body. Default value is "application/json". :paramtype content_type: str :keyword file_id: Identifier of the file. Default value is None. :paramtype file_id: str :keyword data_source: Azure asset ID. Default value is None. :paramtype data_source: ~azure.ai.projects.models.VectorStoreDataSource :keyword chunking_strategy: The chunking strategy used to chunk the file(s). If not set, will use the auto strategy. Default value is None. :paramtype chunking_strategy: ~azure.ai.projects.models.VectorStoreChunkingStrategyRequest :keyword sleep_interval: Time to wait before polling for the status of the vector store. Default value is 1. :paramtype sleep_interval: float :return: VectorStoreFile. The VectorStoreFile is compatible with MutableMapping :rtype: ~azure.ai.projects.models.VectorStoreFile :raises ~azure.core.exceptions.HttpResponseError: """ @overload def create_vector_store_file_and_poll( self, vector_store_id: str, body: IO[bytes], *, content_type: str = "application/json", sleep_interval: float = 1, **kwargs: Any, ) -> _models.VectorStoreFile: """Create a vector store file by attaching a file to a vector store. :param vector_store_id: Identifier of the vector store. Required. :type vector_store_id: str :param body: Required. :type body: IO[bytes] :keyword content_type: Body Parameter content-type. Content type parameter for binary body. Default value is "application/json". :paramtype content_type: str :keyword sleep_interval: Time to wait before polling for the status of the vector store. Default value is 1. :paramtype sleep_interval: float :return: VectorStoreFile. The VectorStoreFile is compatible with MutableMapping :rtype: ~azure.ai.projects.models.VectorStoreFile :raises ~azure.core.exceptions.HttpResponseError: """
[docs] @distributed_trace def create_vector_store_file_and_poll( self, vector_store_id: str, body: Union[JSON, IO[bytes]] = _Unset, *, content_type: str = "application/json", file_id: Optional[str] = None, data_source: Optional[_models.VectorStoreDataSource] = None, chunking_strategy: Optional[_models.VectorStoreChunkingStrategyRequest] = None, sleep_interval: float = 1, **kwargs: Any, ) -> _models.VectorStoreFile: """Create a vector store file by attaching a file to a vector store. :param vector_store_id: Identifier of the vector store. Required. :type vector_store_id: str :param body: Is either a JSON type or a IO[bytes] type. Required. :type body: JSON or IO[bytes] :keyword content_type: Body Parameter content-type. Defaults to 'application/json'. :paramtype content_type: str :keyword file_id: Identifier of the file. Default value is None. :paramtype file_id: str :keyword data_source: Azure asset ID. Default value is None. :paramtype data_source: ~azure.ai.projects.models.VectorStoreDataSource :keyword chunking_strategy: The chunking strategy used to chunk the file(s). If not set, will use the auto strategy. Default value is None. :paramtype chunking_strategy: ~azure.ai.projects.models.VectorStoreChunkingStrategyRequest :keyword sleep_interval: Time to wait before polling for the status of the vector store. Default value is 1. :paramtype sleep_interval: float :return: VectorStoreFile. The VectorStoreFile is compatible with MutableMapping :rtype: ~azure.ai.projects.models.VectorStoreFile :raises ~azure.core.exceptions.HttpResponseError: """ if body is not _Unset: if isinstance(body, dict): vector_store_file = super().create_vector_store_file( vector_store_id=vector_store_id, body=body, content_type=content_type or "application/json", **kwargs, ) elif isinstance(body, io.IOBase): vector_store_file = super().create_vector_store_file( vector_store_id=vector_store_id, body=body, content_type=content_type, **kwargs, ) else: raise ValueError("Invalid type for 'body'. Must be a dict (JSON) or file-like object (IO[bytes]).") else: vector_store_file = super().create_vector_store_file( vector_store_id=vector_store_id, file_id=file_id, data_source=data_source, chunking_strategy=chunking_strategy, **kwargs, ) while vector_store_file.status == "in_progress": time.sleep(sleep_interval) vector_store_file = super().get_vector_store_file( vector_store_id=vector_store_id, file_id=vector_store_file.id ) return vector_store_file
[docs] @distributed_trace def delete_agent(self, assistant_id: str, **kwargs: Any) -> _models.AgentDeletionStatus: """Deletes an agent. :param assistant_id: Identifier of the agent. Required. :type assistant_id: str :return: AgentDeletionStatus. The AgentDeletionStatus is compatible with MutableMapping :rtype: ~azure.ai.projects.models.AgentDeletionStatus :raises ~azure.core.exceptions.HttpResponseError: """ if assistant_id in self._toolset: del self._toolset[assistant_id] return super().delete_agent(assistant_id, **kwargs)
__all__: List[str] = [ "AgentsOperations", "ConnectionsOperations", "TelemetryOperations", "InferenceOperations", ] # Add all objects you want publicly available to users at this package level def patch_sdk(): """Do not remove from this file. `patch_sdk` is a last resort escape hatch that allows you to do customizations you can't accomplish using the techniques described in https://aka.ms/azsdk/python/dpcodegen/python/customize """