Source code for azure.ai.ml.entities._job.parallel.parallel_task

# ---------------------------------------------------------
# Copyright (c) Microsoft Corporation. All rights reserved.
# ---------------------------------------------------------
from os import PathLike
from pathlib import Path
from typing import Any, Dict, Optional, Union

# from azure.ai.ml.entities._deployment.code_configuration import CodeConfiguration
from azure.ai.ml._schema.component.parallel_task import ComponentParallelTaskSchema
from azure.ai.ml._utils.utils import load_yaml
from azure.ai.ml.constants._common import BASE_PATH_CONTEXT_KEY, PARAMS_OVERRIDE_KEY
from azure.ai.ml.entities._assets.environment import Environment
from azure.ai.ml.entities._mixins import DictMixin, RestTranslatableMixin
from azure.ai.ml.entities._util import load_from_dict
from azure.ai.ml.exceptions import ErrorCategory, ErrorTarget, ValidationException


[docs] class ParallelTask(RestTranslatableMixin, DictMixin): """Parallel task. :param type: The type of the parallel task. Possible values are 'run_function'and 'model'. :type type: str :param code: A local or remote path pointing at source code. :type code: str :param entry_script: User script which will be run in parallel on multiple nodes. This is specified as a local file path. The entry_script should contain two functions: ``init()``: this function should be used for any costly or common preparation for subsequent inferences, e.g., deserializing and loading the model into a global object. ``run(mini_batch)``: The method to be parallelized. Each invocation will have one mini-batch. 'mini_batch': Batch inference will invoke run method and pass either a list or a Pandas DataFrame as an argument to the method. Each entry in min_batch will be a filepath if input is a FileDataset, a Pandas DataFrame if input is a TabularDataset. run() method should return a Pandas DataFrame or an array. For append_row output_action, these returned elements are appended into the common output file. For summary_only, the contents of the elements are ignored. For all output actions, each returned output element indicates one successful inference of input element in the input mini-batch. Each parallel worker process will call `init` once and then loop over `run` function until all mini-batches are processed. :type entry_script: str :param program_arguments: The arguments of the parallel task. :type program_arguments: str :param model: The model of the parallel task. :type model: str :param append_row_to: All values output by run() method invocations will be aggregated into one unique file which is created in the output location. if it is not set, 'summary_only' would invoked, which means user script is expected to store the output itself. :type append_row_to: str :param environment: Environment that training job will run in. :type environment: Union[Environment, str] """ def __init__( self, # pylint: disable=unused-argument *, type: Optional[str] = None, # pylint: disable=redefined-builtin code: Optional[str] = None, entry_script: Optional[str] = None, program_arguments: Optional[str] = None, model: Optional[str] = None, append_row_to: Optional[str] = None, environment: Optional[Union[Environment, str]] = None, **kwargs: Any, ): self.type = type self.code = code self.entry_script = entry_script self.program_arguments = program_arguments self.model = model self.append_row_to = append_row_to self.environment: Any = environment def _to_dict(self) -> Dict: # pylint: disable=no-member res: dict = ComponentParallelTaskSchema(context={BASE_PATH_CONTEXT_KEY: "./"}).dump(self) return res @classmethod def _load( cls, # pylint: disable=unused-argument path: Optional[Union[PathLike, str]] = None, params_override: Optional[list] = None, **kwargs: Any, ) -> "ParallelTask": params_override = params_override or [] data = load_yaml(path) return ParallelTask._load_from_dict(data=data, path=path, params_override=params_override) @classmethod def _load_from_dict( cls, data: dict, path: Optional[Union[PathLike, str]] = None, params_override: Optional[list] = None, **kwargs: Any, ) -> "ParallelTask": params_override = params_override or [] context = { BASE_PATH_CONTEXT_KEY: Path(path).parent if path else Path.cwd(), PARAMS_OVERRIDE_KEY: params_override, } res: ParallelTask = load_from_dict(ComponentParallelTaskSchema, data, context, **kwargs) return res @classmethod def _from_dict(cls, dct: dict) -> "ParallelTask": obj = cls(**dict(dct.items())) return obj def _validate(self) -> None: if self.type is None: msg = "'type' is required for ParallelTask {}." raise ValidationException( message=msg.format(self.type), target=ErrorTarget.COMPONENT, no_personal_data_message=msg.format(""), error_category=ErrorCategory.USER_ERROR, )